Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1443195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39364168

RESUMO

Introduction: Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), poses a significant global threat to banana cultivation. Conventional methods of disease management are increasingly challenged, thus making it necessary to explore alternative strategies. Bacterial endophytes, particularly from resistant genotypes, are gaining attention as potential biocontrol agents. Sphingobacterium thalpophilum, isolated from the resistant banana cultivar Pisang lilin (JALHSB010000001-JALHSB010000029), presents an intriguing prospect for combating Fusarium wilt. However, its underlying biocontrol mechanisms remain poorly understood. This study aimed to elucidate the antifungal efficacy of S. thalpophilum NMS02 S296 against Foc and explore its biocontrol mechanisms at the genomic level. Methods: Whole genome sequencing of S. thalpophilum NMS02 S296 was conducted using next-generation sequencing technologies and bioinformatics analyses were performed to identify genes associated with antifungal properties. In vitro assays were used to assess the inhibitory effects of the bacterial isolate on the mycelial growth of Foc. To explore the biomolecules responsible for the observed antagonistic activity, metabolites diffused into the agar at the zone of inhibition between Foc S16 and S. thalpophilum NMS02 S296 were extracted and identified. Results: Whole genome sequencing revealed an array of genes encoding antifungal enzymes and secondary metabolites in S. thalpophilum NMS02 S296. In vitro experiments demonstrated significant inhibition of Foc mycelial growth by the bacterial endophyte. Comparative genomic analysis highlighted unique genomic features in S. thalpophilum linked to its biocontrol potential, setting it apart from other bacterial species. Discussion: The study underscores the remarkable antifungal efficacy of S. thalpophilum NMS02 S296 against Fusarium wilt. The genetic basis for its biocontrol potential was elucidated through whole genome sequencing, shedding light on the mechanisms behind its antifungal activity. This study advanced our understanding of bacterial endophytes as biocontrol agents and offers a promising avenue for plant growth promotion towards sustainable strategies to mitigate Fusarium wilt in banana cultivation.

2.
J Agric Food Chem ; 72(31): 17283-17294, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39074377

RESUMO

A series of new piperidine-4-carbohydrazide derivatives bearing a quinazolinyl moiety were prepared and evaluated for their fungicidal activities against agriculturally important fungi. Among these derivatives, the chemical structure of compound A45 was clearly verified by X-ray crystallographic analysis. The antifungal bioassays revealed that many compounds in this series possessed good to excellent inhibition effects toward the tested fungi. For example, compounds A13 and A41 had EC50 values of 0.83 and 0.88 µg/mL against Rhizoctonia solani in vitro, respectively, superior to those of positive controls Chlorothalonil and Boscalid (1.64 and 0.96 µg/mL, respectively). Additionally, the above two compounds also exhibited notable inhibitory activities against Verticillium dahliae (with EC50 values of 1.12 and 3.20 µg/mL, respectively), far better than the positive controls Carbendazim and Chlorothalonil (19.3 and 11.0 µg/mL, respectively). More importantly, compound A13 could potently inhibit the proliferation of R. solani in the potted rice plants, showing good in vivo curative and protective efficiencies of 76.9% and 76.6% at 200 µg/mL, respectively. Furthermore, compound A13 demonstrated an effective inhibition of succinate dehydrogenase (SDH) activity in vitro with an IC50 value of 6.07 µM. Finally, the molecular docking study revealed that this compound could be well embedded into the active pocket of SDH via multiple noncovalent interactions, involving residues like SER39, ARG43, and GLY46.


Assuntos
Desenho de Fármacos , Fungicidas Industriais , Hidrazinas , Simulação de Acoplamento Molecular , Piperidinas , Rhizoctonia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Hidrazinas/química , Hidrazinas/farmacologia , Relação Estrutura-Atividade , Rhizoctonia/efeitos dos fármacos , Piperidinas/farmacologia , Piperidinas/química , Piperidinas/síntese química , Estrutura Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/química , Quinazolinas/farmacologia , Quinazolinas/química , Quinazolinas/síntese química , Testes de Sensibilidade Microbiana
3.
Food Chem ; 453: 139669, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38781900

RESUMO

Green mold is a common postharvest disease infected by Penicillium digitatum that causes citrus fruit decay, and severely affects fruit storage quality. This work aimed to investigate the antifungal activity of Sanxiapeptin against P. digitatum, and elucidate the possible mechanisms involved. Sanxiapeptin was capable of inhibiting spore germination, germ tube length and mycelial growth. The SYTOX green staining assay revealed that Sanxiapeptin targeted the fungal membrane, and changed the membrane permeability, leading to the leakage of cell constituents. Meanwhile, Sanxiapeptin could influence the cell wall permeability and integrity by increasing the activities of chitinase and glucanase, resulting in abnormal chitin consumption and the decrease of glucan. Intriguingly, Sanxiapeptin could effectively control postharvest decay in citrus fruits, and activate the host resistance responses by regulating the phenylpropanoid pathway. In conclusion, Sanxiapeptin exhibits multiphasic antifungal mechanisms of action to control green mold in citrus fruits, shows great potential as novel food preservatives.


Assuntos
Citrus , Conservantes de Alimentos , Frutas , Penicillium , Doenças das Plantas , Citrus/microbiologia , Citrus/química , Penicillium/crescimento & desenvolvimento , Penicillium/efeitos dos fármacos , Doenças das Plantas/microbiologia , Frutas/microbiologia , Frutas/química , Frutas/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Conservantes de Alimentos/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Conservação de Alimentos/métodos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química
4.
Toxicon ; 243: 107749, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38710308

RESUMO

Aspergillus flavus(A. flavus), a common humic fungus known for its ability to infect agricultural products, served as the subject of investigation in this study. The primary objective was to assess the antifungal efficacy and underlying mechanisms of binary combinations of five volatile organic compounds (VOCs) produced by lactic acid bacteria, specifically in their inhibition of A. flavus. This assessment was conducted through a comprehensive analysis, involving biochemical characterization and transcriptomic scrutiny. The results showed that VOCs induce notable morphological abnormalities in A. flavus conidia and hyphae. Furthermore, they disrupt the integrity of the fungal cell membrane and cell wall, resulting in the leakage of intracellular contents and an increase in extracellular electrical conductivity. In terms of cellular components, VOC exposure led to an elevation in malondialdehyde content while concurrently inhibiting the levels of total lipids, ergosterol, soluble proteins, and reducing sugars. Additionally, the impact of VOCs on A. flavus energy metabolism was evident, with significant inhibition observed in the activities of key enzymes, such as Na+/K+-ATPase, malate dehydrogenase, succinate dehydrogenase, and chitinase. And they were able to inhibit aflatoxin B1 synthesis. The transcriptomic analysis offered further insights, highlighting that differentially expressed genes (DEGs) were predominantly associated with membrane functionality and enriched in pathways about carbohydrate and amino acid metabolism. Notably, DEGs linked to cellular components and energy-related mechanisms exhibited down-regulation, thereby corroborating the findings from the biochemical analyses. In summary, these results elucidate the principal antifungal mechanisms of VOCs, which encompass the disruption of cell membrane integrity and interference with carbohydrate and amino acid metabolism in A. flavus.


Assuntos
Antifúngicos , Aspergillus flavus , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Antifúngicos/farmacologia , Lactobacillales/metabolismo
5.
Mar Drugs ; 22(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667797

RESUMO

The incidence of invasive fungal diseases (IFDs) is on the rise globally, particularly among immunocompromised patients, leading to significant morbidity and mortality. Current clinical antifungal agents, such as polyenes, azoles, and echinocandins, face increasing resistance from pathogenic fungi. Therefore, there is a pressing need for the development of novel antifungal drugs. Marine-derived secondary metabolites represent valuable resources that are characterized by varied chemical structures and pharmacological activities. While numerous compounds exhibiting promising antifungal activity have been identified, a comprehensive review elucidating their specific underlying mechanisms remains lacking. In this review, we have compiled a summary of antifungal compounds derived from marine organisms, highlighting their diverse mechanisms of action targeting various fungal cellular components, including the cell wall, cell membrane, mitochondria, chromosomes, drug efflux pumps, and several biological processes, including vesicular trafficking and the growth of hyphae and biofilms. This review is helpful for the subsequent development of antifungal drugs due to its summary of the antifungal mechanisms of secondary metabolites from marine organisms.


Assuntos
Antifúngicos , Organismos Aquáticos , Animais , Antifúngicos/farmacologia , Produtos Biológicos/farmacologia , Fungos/efeitos dos fármacos , Metabolismo Secundário
6.
World J Microbiol Biotechnol ; 40(5): 161, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613738

RESUMO

Rhizopus nigricans (R. nigricans), one of the fungi that grows the fastest, is frequently discovered in postharvest fruits, it's the main pathogen of strawberry root rot. Flavonoids in Sedum aizoon L. (FSAL) is a kind of green and safe natural substance extracted from Sedum aizoon L. which has antifungal activity. In this study, the minimum inhibitory concentration (MIC) of FSAL on R. nigricans and cell apoptosis tests were studied to explore the inhibitory effect of FSAL on R. nigricans. The effects of FSAL on mitochondria of R. nigricans were investigated through the changes of mitochondrial permeability transition pore(mPTP), mitochondrial membrane potential(MMP), Ca2+ content, H2O2 content, cytochrome c (Cyt c) content, the related enzyme activity and related genes of mitochondria. The results showed that the MIC of FSAL on R. nigricans was 1.800 mg/mL, with the addition of FSAL (1.800 mg/mL), the mPTP openness of R. nigricans increased and the MMP reduced. Resulting in an increase in Ca2+ content, accumulation of H2O2 content and decrease of Cyt c content, the activity of related enzymes was inhibited and related genes were up-regulated (VDAC1, ANT) or down-regulated (SDHA, NOX2). This suggests that FSAL may achieve the inhibitory effect of fungi by damaging mitochondria, thereby realizing the postharvest freshness preservation of strawberries. This lays the foundation for the development of a new plant-derived antimicrobial agent.


Assuntos
Fragaria , Rhizopus , Sedum , Flavonoides/farmacologia , Peróxido de Hidrogênio , Citocromos c , Mitocôndrias
7.
Indian J Microbiol ; 64(1): 70-81, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468744

RESUMO

Biological control has been considered a sustainable alternative to combat phytopathogens. The increase of studies in the past few years involving Actinobacteria as biological control agents of phytopathogenic fungi has motivated us to search for which Actinobacteria genus that have been studied in the last five years and explore their mechanisms of antifungal activity. The accesses were carried out on three multidisciplinary digital platforms: PubMED/MedLine, Web of Science and Scopus. Actinobacteria from genus Amycolatopsis, Curtobacterium, Kocuria, Nocardioides, Nocardiopsis, Saccharopolyspora, Streptoverticillium and especially Streptomyces showed a broad antifungal spectrum through several antibiosis mechanisms such as the production of natural antifungal compounds, siderophores, extracellular hydrolytic enzymes and activation of plant defense system. We observed the formation of a methodology based on antagonistic compounds bioactivity to select efficient Actinobacteria to be used as biological control agents against phytopathogenic fungi. The use of multifunctional Actinobacteria has been proven to be efficient, not only by its natural protective activity against phytopathogenic fungi but also because of their ability to act as plant growth-promoting bacteria.

8.
Int J Biol Macromol ; 259(Pt 1): 129113, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181919

RESUMO

Chitosan is a natural polysaccharide that is abundant, biocompatible and exhibits effective antifungal activity against various pathogenic fungi. However, the potential intracellular targets of chitosan in pathogenic fungi and the way of activity of chitosan are far from well known. The present work demonstrated that chitosan could inhibit Penicillium expansum, the principal causal agent of postharvest blue mold decay on apple fruits, by binding to DNA and triggering apoptosis. UV-visible spectroscopy, fluorescence spectroscopy and electrophoretic mobility assay proved the interaction between chitosan and DNA, while atomic force microscope (AFM) observation revealed the binding morphology of chitosan to DNA. Chitosan could inhibit in vitro DNA replication, and cell cycle analysis employing flow cytometry demonstrated that cell cycle was retarded by chitosan treatment. Furthermore, the reactive oxygen species (ROS) assay and membrane potential analysis showed that apoptosis was induced in P. expansum cells after exposure to chitosan. In conclusion, our results confirmed that chitosan interacts with DNA and induces apoptosis. These findings are expected to provide a feasible theoretical basis and practical direction for the promoting and implementing of chitosan in plant protection and further illuminate the possible antifungal mechanisms of chitosan against fungal pathogens.


Assuntos
Quitosana , Malus , Penicillium , Antifúngicos/farmacologia , Quitosana/farmacologia , Penicillium/genética , Frutas , DNA/farmacologia
9.
Molecules ; 28(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37959814

RESUMO

Penicillium spp. are considered a major spoilage fungus in dairy products. Due to the growing concerns over food safety issues and the demand for "clean label" food products from consumers, the use of lactic acid bacteria (LAB) as a bioprotective tool to control fungal spoilage of dairy products appears to be a promising alternative. Here, the antifungal activities of ten LAB cultures against five dairy-spoilage-associated Penicillium strains were studied in a model system, and the most potent bioprotective cultures were further tested in yoghurt. Lacticaseibacillus rhamnosus (L. rhamnosus) LRH01 and Lactiplantibacillus plantarum (L. plantarum) LP01 exhibited potent antifungal efficacy at low concentrations. The inhibitory effects of cell-containing fermentates (C-fermentates), cell-free fermentates (CF-fermentates), and volatiles produced by the two cultures were tested in a yoghurt serum medium. The C-fermentates showed antifungal effects, while the removal of cells from C-fermentates led to decreased antifungal activities. Volatiles alone displayed some antifungal efficiency, but less than the fermentates. In a yoghurt matrix, the specific effect of manganese depletion by the bioprotective cultures on mold growth was investigated. Here, the LAB cultures could completely suppress the growth of molds, while addition of manganese partially or fully restored the mold growth, demonstrating that manganese depletion played a key role in the antifungal activity of the tested LAB cultures in the yoghurt matrix. Both L. plantarum LP01 and L. rhamnosus LRH01 showed efficient antifungal activities in the yoghurt serum, while L. rhamnosus LRH01 exhibited the most potent inhibitory effects on Penicillium strains when added during the processing of the yoghurt with subsequent storage at 7 °C for 22 days. Our findings suggested that L. rhamnosus LRH01 could be a promising bioprotective culture for yoghurt biopreservation.


Assuntos
Lacticaseibacillus rhamnosus , Lactobacillales , Penicillium , Antifúngicos/farmacologia , Iogurte , Lacticaseibacillus , Manganês/farmacologia , Fungos
10.
Int J Antimicrob Agents ; 61(3): 106709, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640848

RESUMO

The number of invasive fungal infections has increased dramatically, resulting in high morbidity and mortality among immunocompromised patients. With increasing use of caspofungin (CAS), resistant strains have emerged frequently and led to limitations in the treatment of patients with severe invasive Candida albicans infections. Combination therapy is an important method to deal with this issue. As such, this study investigated the activity of CAS in combination with ribavirin (RBV) against C. albicans. The results of this in-vitro study showed that the minimum inhibitory concentrations (MICs) of CAS and RBV when they were used as monotherapy were 0.5-1 µg/mL and 2-8 µg/mL, respectively, while the MIC of CAS decreased from 0.5-1 µg/mL to 0.0625-0.25 µg/mL when used in combination with RBV, with a fractional inhibitory concentration index (FICI) ≤0.5. In addition, the RBV + CAS combination group displayed synergistic effects against C. albicans biofilm over 4 h; the sessile MIC (sMIC) of CAS decreased from 0.5-1 µg/mL to 0.0625-0.25µg/mL and the sMIC of RBV decreased from 4-16 µg/mL to 1-2 µg/mL, with FICI <0.5. The survival of C. albicans-infected Galleria mellonella was prolonged, the fungal burden was decreased, and the area of tissue damage was reduced after combination therapy. Further study showed that the mechanisms of action of the synergistic effect were related to the inhibition of biofilm formation, the inhibition of hyphal growth, and the activation of metacaspases, but were not related to the accumulation of reactive oxygen species. It is hoped that these findings will contribute to the understanding of drug resistance in C. albicans, and provide new insights for the application of RBV.


Assuntos
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Caspofungina/farmacologia , Ribavirina/farmacologia , Fluconazol/farmacologia , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Testes de Sensibilidade Microbiana , Biofilmes
11.
Microbiol Res ; 267: 127253, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36455309

RESUMO

To explore the antifungal mechanisms of volatile organic compounds (VOCs) produced by Pseudomonas fluorescens ZX against Botrytis cinerea, biochemical analyses and transcriptomic techniques were employed in this work. The results showed that P. fluorescens ZX-producing VOCs can increase the cell membrane permeability of B. cinerea and disrupt cell membrane integrity, resulting in leakage of the pathogen's cellular contents, inhibition of ergosterol biosynthesis (about 76%), and an increase in malondialdehyde (MDA) content. Additionally, for B. cinerea respiration, P. fluorescens ZX-producing VOCs (1 × 109 CFU /mL) significantly inhibited the activities of ATPase (55.7%), malate dehydrogenase (MDH) (33.1%), and succinate dehydrogenase (SDH) (57.9%), seriously interfering with energy metabolism and causing accumulation of reactive oxygen species (ROS). Furthermore, transcriptome analysis of B. cinerea following exposure to VOCs revealed 4590 differentially expressed genes (DEGs) (1388 upregulated, 3202 downregulated). Through GO analysis, these DEGs were determined to be enriched in intrinsic components of membrane, integral components of membrane, and membrane parts, while KEGG analysis indicated that they were enriched in many amino acid metabolism pathways. Significantly, the DEGs related to ergosterol biosynthesis, ATPase, mitochondrial respiratory chain, malate dehydrogenase, and cell membrane showed down-regulation, corroborating the biochemical analyses. Taken together, these results suggest that the antifungal activity of P. fluorescens ZX-producing VOCs against B. cinerea occurs primary mechanisms: causing significant damage to the cell membrane, negatively affecting respiration, and interfering with amino acid metabolism.


Assuntos
Antifúngicos , Pseudomonas fluorescens , Compostos Orgânicos Voláteis , Adenosina Trifosfatases/metabolismo , Aminoácidos/metabolismo , Antifúngicos/química , Antifúngicos/metabolismo , Botrytis , Ergosterol/metabolismo , Malato Desidrogenase/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas fluorescens/química , Pseudomonas fluorescens/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo
12.
Front Microbiol ; 13: 924398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783382

RESUMO

Bakery products are nutritious, but they are susceptible to fungal contamination, which leads to a decline in quality and safety. Chemical preservatives are often used to extend the shelf-life of bakery products, but long-term consumption of these preservatives may increase the risk of chronic diseases. Consumers increasingly demand food with fewer chemical preservatives. The application of lactic acid bacteria (LAB) as a novel biological preservative not only prolongs the shelf-life of bakery products but also improves the baking properties of bakery products. This review summarizes different types and action mechanisms of antifungal compounds produced by LAB, factors affecting the production of antifungal compounds, and the effects of antifungal LAB on bakery products, providing a reference for future applications of antifungal LAB in bakery products.

13.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886869

RESUMO

Oral candidiasis has a high rate of development, especially in immunocompromised patients. Immunosuppressive and cytotoxic therapies in hospitalized HIV and cancer patients are known to induce the poor management of adverse reactions, where local and systemic candidiasis become highly resistant to conventional antifungal therapy. The development of oral candidiasis is triggered by several mechanisms that determine oral epithelium imbalances, resulting in poor local defense and a delayed immune system response. As a result, pathogenic fungi colonies disseminate and form resistant biofilms, promoting serious challenges in initiating a proper therapeutic protocol. Hence, this study of the literature aimed to discuss possibilities and new trends through antifungal therapy for buccal drug administration. A large number of studies explored the antifungal activity of new agents or synergic components that may enhance the effect of classic drugs. It was of significant interest to find connections between smart biomaterials and their activity, to find molecular responses and mechanisms that can conquer the multidrug resistance of fungi strains, and to transpose them into a molecular map. Overall, attention is focused on the nanocolloids domain, nanoparticles, nanocomposite synthesis, and the design of polymeric platforms to satisfy sustained antifungal activity and high biocompatibility with the oral mucosa.


Assuntos
Candidíase Bucal , Candidíase , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Biofilmes , Candidíase/tratamento farmacológico , Candidíase Bucal/tratamento farmacológico , Candidíase Bucal/microbiologia , Fungos , Humanos
14.
Pestic Biochem Physiol ; 163: 147-153, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31973852

RESUMO

Microbial secondary metabolites produced by Streptomyces are applied to control plant diseases. ε-poly-l-lysine (ε-PL) is a non-toxic food preservative, but the potential application of ε-PL as a microbial fungicide in agriculture has rarely been reported. In this study, Alternaria alternata (A. alternata) was used to reveal the effect and mode of action for ε-PL on the plant pathogenic fungi. The results showed that ε-PL effectively inhibited necrotic-lesion development caused by A. alternata on tobacco. Mycelial growth was also significantly inhibited in vitro by 100 µg/ml ε-PL using in vitro analysis. Moreover, 25 µg/ml ε-PL inhibited spore germination and induced abnormal morphological development of A. alternata hyphae. To clarify the molecular-genetic antifungal mechanisms, we selected several crucial genes involved in the development and pathogenesis of A. alternata and studied their expression regulated by ε-PL. Results of real-time quantitative PCR showed that a mycelium morphology and pathogenic process related cyclic adenosine monophosphate protein (cAMP) dependent protein kinase A (PKA), Alternaria alternata cAMP-dependent protein kinase catalytic subunit (AAPK1) and the early infection-related glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were down-regulated after ε-PL treatment. The results provide novel insights for the application of ε-PL in the control of plant diseases caused by A. alternata.


Assuntos
Alternaria , Nicotiana , Doenças das Plantas , Polilisina , Virulência
15.
Future Microbiol ; 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31394935

RESUMO

Fungal infections are a growing challenge in immunocompromised patients, especially candidiasis. The prolonged use of traditional antifungals to treat Candida infection has caused the emergence of drug resistance, especially fluconazole. Therefore, new therapeutic strategies for Candida infection are warranted. Recently, attention has been paid to the anti-Candida activity of antibiotics and their derivatives. Studies revealed that a series of antibiotics/derivatives displayed potential anti-Candida activity and some of them could significantly increase the susceptibility of antifungals. Interestingly, the derivatives of aminoglycosides were even more active than fluconazole/itraconazole/posaconazole. This article reviews the anti-Candida activities and mechanisms of antibiotics/derivatives used alone or in combination with antifungals. This review will helpfully provide novel insights for overcoming Candida resistance and discovering new antifungals.

16.
J Appl Microbiol ; 126(4): 1161-1174, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30614164

RESUMO

AIMS: As a natural antimicrobial agent, Melaleuca alternifolia oil (MAO) is generally recognized to be safe and effective in the inhibition of phytopathogenic fungi. Due to lack of comprehensive studies on MAO for controlling postharvest Aspergillus, we investigated the preservative mechanism of MAO and its components against Aspergillus ochraceus in postharvest grapes to evaluate their potential effectiveness as fruit preservatives. METHODS AND RESULTS: In our study, the compositions in MAO were analysed by gas chromatography-mass spectrometry. The inhibitory effects of MAO and its main constituents against A. ochraceus were compared by scanning electron microscopy and transmission electron microscopy observation, and metabolic analysis. Two components of MAO, α-terpineol and terpene-4-alcohol, showed higher antifungal effects than MAO, of which α-terpineol caused the worst leakage of cytoplasm and most serious hyphae distortions and spore disruptions. The downregulation of metabolic pathways of A. ochraceus was strongest with α-terpineol. The best inhibitory efficacy against A. ochraceus in grapes also occurred with α-terpineol. 3-Carene showed little inhibitory effect. CONCLUSIONS: These results demonstrate that not all components in MAO possess antimicrobial effects, and α-terpineol is the main contributor of MAO's A. ochraceus inhibition effect. SIGNIFICANCE AND IMPACT OF THE STUDY: α-Terpineol may be used as an alternative natural preservative for the postharvest storage of grapes and other fruits.


Assuntos
Antifúngicos/farmacologia , Aspergillus ochraceus/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Óleo de Melaleuca/farmacologia , Vitis/microbiologia , Antifúngicos/química , Monoterpenos Cicloexânicos , Cicloexenos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Monoterpenos/farmacologia , Doenças das Plantas/microbiologia , Óleo de Melaleuca/química , Terpenos/farmacologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-29610196

RESUMO

Systemic candidiasis is a growing health care concern that is becoming even more challenging due to the growing frequency of infections caused by multidrug-resistant (MDR) Candida species. Thus, there is an urgent need for new therapeutic approaches to candidiasis, including strategies bioinspired by insights into natural host defense against fungal pathogens. The antifungal properties of θ-defensins, macrocyclic peptides expressed in tissues of Old World monkeys, were investigated against a panel of drug-sensitive and drug-resistant clinical isolates of Candida albicans and non-albicans Candida species. Rhesus θ-defensin 1 (RTD-1), the prototype θ-defensin, was rapidly and potently fungicidal against drug-sensitive and MDR C. albicans strains. Fungal killing occurred by cell permeabilization that was temporally correlated with ATP release and intracellular accumulation of reactive oxygen species (ROS). Killing by RTD-1 was compared with that by histatin 5 (Hst 5), an extensively characterized anticandidal peptide expressed in human saliva. RTD-1 killed C. albicans much more rapidly and at a >200-fold lower concentration than that of Hst 5. Unlike Hst 5, the anticandidal activity of RTD-1 was independent of mitochondrial ATP production. Moreover, RTD-1 was completely resistant to Candida proteases for 2 h under conditions that rapidly and completely degraded Hst 5. MICs and minimum fungicidal concentrations (MFCs) of 14 natural θ-defensins isoforms against drug-resistant C. albicans isolates identified peptides that are more active than amphotericin B and/or caspofungin against fluconazole-resistant organisms, including MDR Candida auris. These results point to the potential of macrocyclic θ-defensins as structural templates for the design of antifungal therapeutics.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Defensinas/farmacologia , Anfotericina B/farmacologia , Animais , Candida/isolamento & purificação , Candidíase/microbiologia , Caspofungina/farmacologia , Farmacorresistência Fúngica Múltipla/fisiologia , Fluconazol/farmacologia , Histatinas/farmacologia , Humanos , Macaca mulatta , Testes de Sensibilidade Microbiana , Isoformas de Proteínas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA