RESUMO
Trace amine-associated receptors (TAARs) are a class of G protein-coupled receptors, playing an immunomodulatory function in the neuroinflammatory responses. In the present study, a TAAR homologue with a 7tm_classA_rhodopsin-like domain (designated as CgTAAR1L) was identified in oyster Crassostrea gigas. The abundant CgTAAR1L transcripts were detected in visceral ganglia and haemocytes compared to other tissues, which were 55.35-fold and 32.95-fold (p < 0.01) of those in adductor muscle, respectively. The mRNA expression level of CgTAAR1L in haemocytes significantly increased and reached the peak level at 3 h after LPS or Poly (I:C) stimulation, which was 4.55-fold and 12.35-fold of that in control group, respectively (p < 0.01). After the expression of CgTAAR1L was inhibited by the injection of its targeted siRNA, the mRNA expression levels of interleukin17s (CgIL17-1, CgIL17-5 and CgIL17-6), and defensin (Cgdefh1) significantly decreased at 3 h after LPS stimulation, which was 0.51-fold (p < 0.001), 0.39-fold (p < 0.01), 0.48-fold (p < 0.05) and 0.41-fold (p < 0.05) of that in the control group, respectively. The nuclear translocation of Cgp65 protein was suppressed in the CgTAAR1L-RNAi oysters. Furthermore, the number of Vibrio splendidus in the haemolymph of CgTAAR1L-RNAi oysters significantly increased (4.11-fold, p < 0.001) compared with that in the control group. In contrast, there was no significant difference in phagocytic rate of haemocytes to V. splendidus in the CgTAAR1L-RNAi oysters. These results indicated that CgTAAR1L played an important role in the immune defense against bacterial infection by inducing the expressions of interleukin and defensin.
Assuntos
Crassostrea , Defensinas , Hemócitos , Lipopolissacarídeos , Receptores Acoplados a Proteínas G , Vibrio , Animais , Crassostrea/imunologia , Hemócitos/imunologia , Hemócitos/metabolismo , Vibrio/imunologia , Vibrio/fisiologia , Lipopolissacarídeos/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Defensinas/genética , Defensinas/metabolismo , Imunidade Inata , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/imunologia , Poli I-C/imunologia , RNA Interferente Pequeno/genética , Vibrioses/imunologia , Receptores Associados a Traços de AminaRESUMO
Janus kinases (JAKs) are important components of the JAK-STAT signaling pathway and play vital roles in innate immunity, autoimmune diseases, and inflammation. However, information about JAKs remains largely unknown in the spotted seabass, a fish species of Perciformes with great commercial value in the aquaculture industry. The aims of this study are to obtain the complete cDNA sequences of JAKs (JAK1, JAK2A, JAK2B, JAK3 and TYK2) from spotted seabass and to investigate their roles upon stimulation with lipopolysaccharides (LPS) and Edwardsiella tarda, using RT-PCR, PCR and qRT-PCR methods. All five JAK genes from the spotted seabass, each encode more than 1100 amino acids residues. JAK1 and JAK3 consist of 24 exons and 23 introns, whereas JAK2A, JAK2B and TYK2 consist of 23 exons and 22 introns. Furthermore, these five spotted seabass JAKs share high sequence identities with those of other fish species in protein domain analysis, synteny analysis, and phylogenetic analysis. Moreover, these five JAK genes were ubiquitously expressed in all tissues examined from healthy fish, and inducible expressions of JAKs were observed in the intestine, gill, head kidney, and spleen following LPS treatment or E. tarda infection. These findings indicate that all these JAK genes are involved in the antibacterial immunity of the spotted seabass and provide a basis for further understanding the mechanism of JAKs antibacterial response in the spotted sea bass.
Assuntos
Bass , Clonagem Molecular , Proteínas de Peixes , Janus Quinases , Lipopolissacarídeos , Filogenia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Bass/genética , Bass/imunologia , Lipopolissacarídeos/imunologia , Janus Quinases/metabolismo , Janus Quinases/genética , Edwardsiella tarda/fisiologia , Imunidade Inata/genética , Doenças dos Peixes/imunologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Sequência de AminoácidosRESUMO
Previous data indicate that one cycle of treatment with radium-223 (223Ra) did not significantly impair lymphocyte function in patients with metastasized, castration-resistant prostate cancer. The aim of the current study was to assess in 21 patients whether six cycles of this therapy had an effect on lymphocyte proliferation and interferon-γ and interleukin (IL)-10 ELISpot results. Lymphocyte proliferation after stimulation with microbial antigens and the production of interferon-γ continuously decreased after six cycles of radionuclide therapy, reaching statistical significance (p < 0.05) at months 1, 2, 4, and/or 6 after therapy. One month after the last cycle of therapy, 67% of patients showed a decrease in tumor burden. The tumor burden correlated negatively with IL-10 secretion at baseline, e.g., after stimulation with tetanus antigen (p < 0.0001, r = -0.82). As determined by receiver operating characteristic (ROC) curve analysis, tetanus-specific IL-10 spots at baseline had the highest predictive value (p = 0.005) for tumor burden at month 6, with an area under the curve (AUC) of 0.90 (sensitivity 100%, specificity 78%). In conclusion, we observed an additive effect of treatment with 223Ra on immune function and found that IL-10 secretion at baseline predicted tumor burden at month 6 after treatment.
RESUMO
The C-C chemokine receptors (CCRs) family is involved in diverse pathophysiological processes in mammals, such as immune regulation and cancer, but their functions in invertebrates remain enigmatic. Here, two CCR homologs in Penaeus vannamei (designated PvCCR1 and PvCCR5) were characterized and found to share sequence homology with other CCRs and contain the conserved 7TM functional domain. Both PvCCR1 and PvCCR5 were constitutively expressed in healthy shrimp tissues, while their mRNA transcript levels were induced in hepatopancreas and hemocytes by Vibrio parahaemolyticus, Streptococcus iniae, and white spot syndrome virus. Notably, shrimp survival increased after knockdown of PvCCR1 and PvCCR5 followed by V. parahaemolyticus infection, indicating that PvCCR1 and PvCCR5 are annexed by the bacteria for their benefit, the absence of which attenuates the effects of the pathogen on shrimp survival. The present data indicate that PvCCR1 and PvCCR5 play key roles in the antimicrobial immune response and therefore vital for shrimp survival.
Assuntos
Bactérias , Receptores CCR5 , Animais , Receptores CCR5/genética , MamíferosRESUMO
Arginine metabolism pathway enzymes and products are important modulators of several physiological processes in animals, including immune response. Although some components of the arginine metabolic pathway have been reported in penaeid shrimps, no systematic study has explored all the key pathway enzymes involved in shrimp antimicrobial response. Here, we explored the role of the three key arginine metabolism enzymes (nitric-oxide synthase (NOS), arginase (ARG), agmatinase (AGM)) in Penaeus vannamei antimicrobial immunity. First, P. vannamei homologs of ARG and AGM (PvARG and PvAGM) were cloned and found to be evolutionally conserved with invertebrate counterparts. Transcript levels of PvARG, PvAGM, and PvNOS were ubiquitously expressed in healthy shrimp tissues and induced in hemocytes and hepatopancreas upon challenge with Gram-negative (Vibrio parahaemolyticus) and Gram-positive (Streptoccocus iniae) bacteria, suggesting their involvement in shrimp antimicrobial immune response. Besides, RNA interference knockdown and enzyme activity assay revealed an antagonistic relationship between PvARG/PvAGM and PvNOS, while this relationship was broken upon pathogen stimulation. Interestingly, knockdown of PvNOS increased Vibrio abundance in shrimp hemolymph, whereas knockdown of PvAGR reduced Vibrio abundance. Taken together, our present data shows that homologs of the key arginine metabolism pathway enzymes in penaeid shrimp (PvARG, PvAGM, and PvNOS) work synergistically and/or antagonistically to modulate antibacterial immune response.
Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Antibacterianos/metabolismo , Arginina/metabolismo , Proteínas de Artrópodes/metabolismo , Hemócitos , Imunidade , Imunidade Inata/genética , Redes e Vias MetabólicasRESUMO
The low frequency of circulating antigen-specific memory B cells is a considerable obstacle in the discovery and development of human monoclonal antibodies for therapeutic application. Here, we evaluate two solid-phase isolation methods to enrich the number of antigen-specific B cells from individuals naturally immunized against streptolysin O (SLO), a key virulence factor and known immunogen of group A streptococcus (GAS). Class-switched B cells obtained from individuals with a history of GAS infection were separated from peripheral blood mononuclear cells (PBMCs) by immunomagnetic methods. SLO-specific B cells were further enriched directly by binding to SLO monomers and captured by streptavidin-coated magnetic microbeads or indirectly by binding a fluorescently labeled SLO-streptavidin tetramer and captured by anti-fluorophore immunomagnetic microbeads. SLO-bound B cells were quantitated by flow cytometry and/or expanded in batch culture to determine IgG specificity. From individuals who have suffered a GAS infection ≥2 years prior, only the direct method enriched SLO-specific B cells, as determined by flow cytometry. Likewise, in batch culture, B cells isolated by the direct method resulted in an average of 375-fold enrichment in anti-SLO IgG, while no enrichment was observed for B cells isolated by the indirect method. The direct method established here provides a simple approach to increase low-frequency antigen-specific B cell populations supporting many downstream applications, such as immortalization of B cells, cloning of immunoglobulin genes, or purification of antibodies from supernatant for future study. Overall, this process is efficient, is inexpensive, and can be applied to many naturally immunogenic antigens.IMPORTANCE Bacteria called group A streptococci can cause a variety of skin and soft tissue infections ranging from mild pharyngitis ("strep throat") to deadly necrotizing fasciitis (sometimes called "flesh-eating" disease). In each case, the development of disease and the degree of tissue damage are mediated by toxins released from the bacteria during infection. Consequently, novel therapies aimed at clearing bacterial toxins are greatly needed. One promising new treatment is the utilization of monoclonal antibodies delivered as an immunotherapeutic for toxin neutralization. However, current methods of antibody development are laborious and costly. Here, we report a method to enrich and increase the detection of highly desirable antigen-specific memory B cells from individuals previously exposed to GAS using a cost-effective and less-time-intensive strategy. We envision that this method will be incorporated into many applications supporting the development of immunotherapeutics.
Assuntos
Antígenos de Bactérias/imunologia , Subpopulações de Linfócitos B/imunologia , Separação Celular/métodos , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Estreptolisinas/imunologia , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Técnicas de Cultura de Células , Citometria de Fluxo , Humanos , Imunoglobulina G/imunologiaRESUMO
PURPOSE: Therapy with the alpha-emitter radium-223 chloride (223Ra) is an innovative therapeutic option in patients with metastasized, castration-resistant prostate cancer. However, radiotherapy can lead to hematopoietic toxicity. The aim of this study was to determine if 223Ra therapy induces an impairment of cellular antimicrobial immune responses. METHODS: In 11 patients receiving 223Ra treatment, lymphocyte proliferation and the production of pro- and anti-inflammatory cytokines (interferon-γ and interleukin-10) were determined, using lymphocyte transformation testing and ELISpot, respectively. Lymphocyte function after stimulation with mitogens and microbial antigens was assessed prior to therapy and at day 1, 7 and 28 after therapy. RESULTS: Lymphocyte proliferation and the production of interferon-γ and interleukin-10 towards mitogens and antigens remained unchanged after therapy. Consistent with these in vitro data, we did not observe infectious complications after treatment. CONCLUSIONS: The results argue against an impairment of lymphocyte function after 223Ra therapy. Thus, immune responses against pathogens should remain unaffected.