Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
Front Immunol ; 15: 1323171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359734

RESUMO

Introduction: Kawasaki disease (KD) is a pediatric vasculitis that can result in coronary artery aneurysm (CAA) formation, which is a dangerous complication. Treatment with intravenous immunoglobulin (IVIg) significantly decreases the risk of CAA, possibly through competitive binding to Fc-gamma receptors (FcγRs), which reduces the binding of pathological immune complexes. However, ~20% of children have recrudescence of fever and have an increased risk of CAA. Therefore, we aimed to identify genetic markers at the FCGR2/3 locus associated with susceptibility to KD, IVIg resistance, or CAA. Materials and methods: We investigated the association of single-nucleotide polymorphisms (SNPs) and copy number variations (CNVs) at the FCGR2/3 locus with KD susceptibility, IVIg resistance, and CAA risk using a family-based test (KD susceptibility) and case-control analyses (IVIg resistance and CAA risk) in different cohorts, adding up to a total of 1,167 KD cases. We performed a meta-analysis on IVIg resistance and CAA risk including all cohorts supplemented by previous studies identified through a systematic search. Results: FCGR2A-p.166His was confirmed to be strongly associated with KD susceptibility (Z = 3.17, p = 0.0015). In case-control analyses, all of the investigated genetic variations at the FCGR2/3 locus were generally not associated with IVIg resistance or with CAA risk, apart from a possible association in a Polish cohort for the FCGR3B-NA2 haplotype (OR = 2.15, 95% CI = 1.15-4.01, p = 0.02). Meta-analyses of all available cohorts revealed no significant associations of the FCGR2/3 locus with IVIg resistance or CAA risk. Discussion: FCGR2/3 polymorphisms are associated with susceptibility to KD but not with IVIg resistance and CAA formation. Currently known genetic variations at the FCGR2/3 locus are not useful in prediction models for IVIg resistance or CAA risk.


Assuntos
Aneurisma Coronário , Predisposição Genética para Doença , Imunoglobulinas Intravenosas , Síndrome de Linfonodos Mucocutâneos , Polimorfismo de Nucleotídeo Único , Receptores de IgG , Humanos , Síndrome de Linfonodos Mucocutâneos/genética , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Receptores de IgG/genética , Imunoglobulinas Intravenosas/uso terapêutico , Aneurisma Coronário/genética , Aneurisma Coronário/etiologia , Masculino , Feminino , Pré-Escolar , Resistência a Medicamentos/genética , Criança , Lactente , Estudos de Casos e Controles , Variações do Número de Cópias de DNA
2.
Pestic Biochem Physiol ; 204: 106061, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277377

RESUMO

Aphis gossypii Glover is one of the most agriculturally important phloem-feeding economic pests, causing tremendous loss in crop yield annually. The hormesis is an important cause of A. gossypii resistance formation, population resurgence, and re-outbreak. However, whether the hormesises induced by different insecticides interact mutually remain largely unclear. In the study, four-generation A. gossypii experiment found that the 24-h sublethal-dose (LC20) sulfoxaflor treatment on G0 significantly increased the net reproductive rate (R0) and fecundity of G1 and G2 generation A. gossypii, but it did not significantly affect the fecundity of G3 and G4 individuals. Transcriptomic analyses revealed that the insecticide-induced significant up-regulation of pathways ribosome, energy metabolism, and the DNA replication and reparation might be responsible for the enhancement of fecundity in G1 and G2 A. gossypii. Notably, G0 exposure to LC20 sulfoxaflor followed by G1 exposure to LC30 deltamethrin resulted in a stronger reproductive stimulation than sulfoxaflor or deltamethrin exposure alone. Our findings provide valuable reference for optimizing sulfoxaflor application in integrated pest management strategies.


Assuntos
Afídeos , Hormese , Inseticidas , Piridinas , Reprodução , Compostos de Enxofre , Animais , Compostos de Enxofre/toxicidade , Compostos de Enxofre/farmacologia , Reprodução/efeitos dos fármacos , Afídeos/efeitos dos fármacos , Afídeos/genética , Hormese/efeitos dos fármacos , Piridinas/toxicidade , Piridinas/farmacologia , Inseticidas/toxicidade , Inseticidas/farmacologia , Piretrinas/toxicidade , Nitrilas/toxicidade , Nitrilas/farmacologia , Fertilidade/efeitos dos fármacos
3.
Pest Manag Sci ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329422

RESUMO

BACKGROUND: Deltamethrin, as a highly effective and broad-spectrum insecticide, has been widely used for agricultural pest control such as Aphis gossypii worldwide. Increasing evidence has shown that despite great economic benefits brought by it, deltamethrin has also non-negligible side effects. However, the potential risks and related molecular mechanisms remain largely unclear. RESULTS: Herein, the life table parameters and transcriptome sequencing analyses of the four successive aphid generations were performed to investigate the hormesis and transgenerational effects of deltamethrin on A. gossypii. The life table analysis showed that although the exposure of G0 aphid to 30% lethal concentration (LC30) deltamethrin significantly reduced the net reproduction rate (R0), intrinsic rate of increase (r), and fecundity of G0, but it significantly enhanced the R0 and fecundity of subsequent two generations (G1 and G2) of A. gossypii. Moreover, transcriptomic analyses showed that the signaling pathways related to posttranscriptional regulation (spliceosome), protein processing, longevity regulating, and cell proliferation (DNA replication, homologous recombination and non-homologous end-joining) were significantly up-regulated in G1 or G2 under LC30 deltamethrin treatment. Additionally, we also found that the deltamethrin-sulfoxaflor rotation of G0 and G1 still induced reproductive stimulation, but the reproductive stimulation induced by insecticides rotation treatment was significantly lower than that in the deltamethrin exposure alone. CONCLUSION: Our study demonstrates that sublethal concentrations of deltamethrin significantly enhanced the offspring fecundity of cotton aphid. In addition, our study also reveals the transcriptional response mechanism of hormesis-induced fecundity increase, providing valuable reference for optimizing the application of deltamethrin in integrated pest management. © 2024 Society of Chemical Industry.

4.
Bull Entomol Res ; : 1-10, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39328178

RESUMO

Aphis gossypii is one of the most economically important agricultural pests that cause serious crop losses worldwide, and the indiscriminate chemical application causes resistance development in A. gossypii, a major obstacle to successful control. In this study, we selected the up-regulated expression gene AgJHAMT, which was enriched into juvenile hormone pathway though transcriptome sequencing analysis of the cotton aphids that fed on transgenic cotton lines expressing dsAgCYP6CY3 (the TG cotton). The AgJHAMT gene was overexpressed in cotton aphids which fed on the TG cotton, and its expression profile during the nymphs was clarified. Then, silencing AgJHAMT could advance the developmental period of cotton aphids by 0.5 days compared with control groups. The T and t values of cotton aphids in the dsJHAMT treatment group (6.88 ± 0.15, 1.65 ± 0.06) were significantly shorter than that of the sprayed H2O control group (7.6 ± 0.14, 1.97 ± 0.09) (P < 0.05), respectively. The fast growth caused by AgJHAMT silencing was rescued by applying the JH analogue, methoprene. Overall, these findings clarified the function of AgJHAMT in the developmental period of A. gossypii. This study contributes to further clarify the molecular mechanisms of delaying the growth and development of cotton aphids by the transgenic cotton lines expressing dsAgCYP6CY3.

5.
Genes (Basel) ; 15(9)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39336715

RESUMO

Cotton aphids (Aphis gossypii Glover) cause harm by feeding on phloem sap and spreading plant viruses to lily. Understanding the mechanisms by which aphids infest lily plants is crucial for effective aphid management and control. In this study, we investigated the activity of antioxidants, integrated nontargeted metabolomes and transcriptomes of lilies infested by cotton aphids to explore the changes in lily leaves. Overall, the results indicated that the catalase (CAT) activity in the leaves of the lily plants was greater than that in the leaves of the control plants. A comprehensive identification of 604 substances was conducted in the leaves. Furthermore, the differentially abundant metabolite analysis revealed the enrichment of phenylalanine metabolism and α-linolenic acid metabolism. Moreover, 3574 differentially expressed genes (DEGs), whose expression tended to increase, were linked to glutathione metabolism and phenylpropanoid biosynthesis. In addition, the integrated analysis revealed that the defensive response of lily leaves to aphids is manifested through antioxidant reactions, phenylpropane and flavonoid biosynthesis, and α-linolenic acid metabolism. Finally, the key metabolites were CAT, glutathione, coumaric acid, and jasmonic acid, along with the key genes chalcone synthase (CHS), phenylalanine ammonia-lyase (PAL), and 12-oxo-phytodienoic acid reductase (OPR). Accordingly, the findings of this research elucidate the molecular and metabolic reactions of A. gossypii in lily plants, offering valuable insights for developing aphid resistance strategies in lily farming.


Assuntos
Antioxidantes , Afídeos , Lilium , Folhas de Planta , Transcriptoma , Afídeos/genética , Lilium/genética , Lilium/metabolismo , Animais , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas , Metabolômica/métodos , Metaboloma , Catalase/metabolismo , Catalase/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Sci Total Environ ; 951: 175712, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39181260

RESUMO

Insecticide resistance monitoring is essential for guiding chemical pest control and resistance management policies. Currently, rapid and effective technology for monitoring the resistance of tiny insects in the field is absent. Aphis gossypii Glover is a typical tiny insect, and one of the most frequently reported insecticide-resistant pests. In this study, we established a novel CRISPR/Cas12a-based rapid visual detection approach for detecting the V62I and R81T mutations in the ß1 subunit of the nAChR in A. gossypii, to reflect target-site resistance to imidacloprid. Based on the nAChR ß1 subunit gene in A. gossypii, the V62I/R81T-specific RPA primers and crRNAs were designed, and the ratio of 10 µM/2 µM/10 µM for ssDNA/Cas12a/crRNA was selected as the optimal dosage for the CRISPR reaction, ensuring that Cas12a only accurately recognizes imidacloprid-resistance templates. Our data show that the field populations of resistant insects possessing V62I and R81T mutations to imidacloprid can be accurately identified within one hour using the RPA-CRISPR/Cas12a detection approach under visible blue light at 440-460 nm. The protocol for RPA-CRISPR detection necessitates a single less than 2 mm specimen of A. gossypii tissues to perform RPA-CRISPR detection, and the process only requires a container at 37 °C and a portable blue light at 440-460 nm. Our research represents the first application of RPA-CRISPR technology in insecticide resistance detection, offers a new method for the resistance monitoring of A. gossypii or other tiny insects, helps delay the development of resistance to imidacloprid, improves the sustainability of chemical control, and provides theoretical guidance for managing pest resistance.


Assuntos
Afídeos , Sistemas CRISPR-Cas , Resistência a Inseticidas , Inseticidas , Neonicotinoides , Nitrocompostos , Animais , Resistência a Inseticidas/genética , Afídeos/efeitos dos fármacos , Afídeos/fisiologia
7.
Pestic Biochem Physiol ; 203: 106003, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084799

RESUMO

Metarhizium anisopliae is an effective biopesticide for controlling Aphis citricola, which has developed resistance to many chemical pesticides. However, the powerful immune system of A. citricola has limited the insecticidal efficacy of M. anisopliae. The co-evolution between insects and entomogenous fungi has led to emergence of new antifungal immune genes, which remain incompletely understood. In this study, an important immune gene Sgabd-2 was identified from A. citricola through transcriptome analysis. Sgabd-2 gene showed high expression in the 4th instar nymph and adult stages, and was mainly distributed in the abdominal region of A. citricola. The recombinant protein (rSgabd-2) exhibited no antifungal activity but demonstrated clear agglutination activity towards the conidia of M. anisopliae. RNA interference of Sgabd-2 by dsRNA feeding resulted in decreased phenoloxidase (PO) activity and weakened defense for A. citricola against M. anisopliae. Simultaneous silence of GNBP-1 and Sgabd-2 effectively reduced the immunity of A. citricola against M. anisopliae more than the individual RNAi of GNBP-1 or Sgabd-2. Furthermore, a genetically engineered M. anisopliae expressing double-stranded RNA (dsSgabd-2) targeting Sgabd-2 in A. citricola successfully suppressed the expression of Sgabd-2 and demonstrated increased virulence against A. citricola. Our findings elucidated Sgabd-2 as a critical new antifungal immune gene and proposed a genetic engineering strategy to enhance the insecticidal virulence of entomogenous fungi through RNAi-mediated inhibition of pest immune genes.


Assuntos
Afídeos , Metarhizium , Metarhizium/patogenicidade , Animais , Afídeos/microbiologia , Controle Biológico de Vetores/métodos , Agentes de Controle Biológico , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interferência de RNA
8.
J Agric Food Chem ; 72(31): 17271-17282, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39052523

RESUMO

Ethyl 5-cyano-1,6-dihydro-2-methyl-4-(2'-thienyl)-6-thioxonicotinate (A) was synthesized and reacted with ethyl chloroacetate in the presence of sodium acetate or sodium carbonate to give ethyl 5-cyano-6-((2-ethoxy-2-oxoethyl)thio)-2-methyl-4-(2'-thienyl)nicotinate (1a) or its isomeric thieno[2,3-b]pyridine 2a. 3-Aminothieno[2,3-b]pyridine-2-carboxamide 2b was also synthesized by the reaction of A with 2-chloroacetamide. The reaction of 1a with hydrazine hydrate in boiling ethanol gave acethydrazide 3. Heating ester 1a with hydrazine hydrate under neat conditions afforded 3-amino-1H-pyrazolo[3,4-b]pyridine 10. Compounds 2b, 3, and 10 were used as precursors for synthesizing other new thieno[2,3-b]pyridines and pyrazolo[3,4-b]pyridines containing mainly the ethyl nicotinate scaffold. Structures of all new compounds were confirmed by elemental and spectral analyses. Most of the obtained compounds were evaluated for their insecticidal activity toward the nymphs and adults of Aphis gossypii (Glover,1887). Some compounds such as 4, 9b, and 9c showed promising results. The effect of some sublethal concentrations, less than LC50, of compounds 4, 9b, and 9c on the examined Aphis was subjected to a further study. The results demonstrated that exposure of A. gossypii nymphs to sublethal concentrations of compounds 4, 9b, and 9c had noticeable effects on their biological parameters, i.e., nymphal instar duration, generation time, and adult longevity. The highest concentration C1 of all three compounds increased the nymphal instar duration and generation time and decreased adult longevity and vice versa.


Assuntos
Afídeos , Inseticidas , Piridinas , Inseticidas/química , Inseticidas/farmacologia , Inseticidas/síntese química , Animais , Piridinas/química , Afídeos/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Ácidos Nicotínicos/química , Ácidos Nicotínicos/farmacologia
9.
Insects ; 15(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38921101

RESUMO

Tropical and subtropical crops are being increasingly cultivated in South Korea, leading to an increase in damage by exotic insect pests. Consequently, ethyl formate (EF) is currently being considered for quarantine and pre-shipment fumigation. In this study, we evaluated the effectiveness of EF fumigation for controlling Aphis spiraecola Patch and Aphis gossypii Glover, two representative quarantine pests on passion fruit ("Pink Bourbon") during greenhouse cultivation and post-harvest storage. The efficacy of EF against both aphids in terms of the lethal concentration causing 50% mortality (LCt50%) and LCt99% was 1.36-2.61 g h/m3 and 3.73-7.55 g h/m3 under greenhouse conditions (23 °C), and 1.37-2.02 g h/m3 and 3.80-14.59 g h/m3 post-harvest (5 °C), respectively. EF at 4 g/m3 for 4 h resulted in 100% mortality of A. spiraecola, which was more resistant to EF, without causing phytotoxic damage to the trees in a 340 m3 greenhouse. Post-harvest fruit fumigation at 10 g/m3 for 4 h in a mid-size (0.8 m3) fumigation chamber resulted in complete disinfection. Moreover, the EF level decreased below the EF threshold within 10 min after natural ventilation in the greenhouse. Therefore, our results suggest EF fumigation as an effective method for controlling A. spiraecola and A. gossypii.

10.
J Agric Food Chem ; 72(25): 14141-14151, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864686

RESUMO

The cotton aphid, Aphis gossypii, is a polyphagous pest that stunts host plant growth via direct feeding or transmitting plant virus. Due to the long-term application of insecticides, A. gossypii has developed different levels of resistance to numerous insecticides. We found that five field populations had evolved multiple resistances to neonicotinoids. To explore the resistance mechanism mediated by uridine diphosphate glycosyltransferases (UGTs), two upregulated UGT genes in these five strains, UGT350C3 and UGT344L7, were selected for functional analysis of their roles in neonicotinoid detoxification. Transgenic Drosophila bioassay results indicated that compared with the control lines, the UGT350C3 and UGT344L7 overexpression lines were more tolerant to thiamethoxam, imidacloprid, and dinotefuran. Knockdown of UGT350C3 and UGT344L7 significantly increased A. gossypii sensitivity to thiamethoxam, imidacloprid, and dinotefuran. Molecular docking analysis demonstrated that these neonicotinoids could bind to the active pockets of UGT350C3 and UGT344L7. This study provides functional evidence of neonicotinoid detoxification mediated by UGTs and will facilitate further work to identify strategies for preventing the development of neonicotinoid resistance in insects.


Assuntos
Afídeos , Glicosiltransferases , Resistência a Inseticidas , Inseticidas , Neonicotinoides , Nitrocompostos , Animais , Afídeos/genética , Afídeos/enzimologia , Afídeos/efeitos dos fármacos , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Neonicotinoides/química , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/metabolismo , Resistência a Inseticidas/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Tiametoxam , Drosophila/genética , Drosophila/enzimologia , Drosophila/efeitos dos fármacos , Drosophila/metabolismo , Guanidinas
11.
Arch Insect Biochem Physiol ; 116(2): e22123, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860775

RESUMO

Aphids are sap-sucking insects responsible for crop losses and a severe threat to crop production. Proteins in the aphid saliva are integral in establishing an interaction between aphids and plants and are responsible for host plant adaptation. The cotton aphid, Aphis gossypii (Hemiptera: Aphididae) is a major pest of Gossypium hirsutum. Despite extensive studies of the salivary proteins of various aphid species, the components of A. gossypii salivary glands are unknown. In this study, we identified 123,008 transcripts from the salivary gland of A. gossypii. Among those, 2933 proteins have signal peptides with no transmembrane domain known to be secreted from the cell upon feeding. The transcriptome includes proteins with more comprehensive functions such as digestion, detoxification, regulating host defenses, regulation of salivary glands, and a large set of uncharacterized proteins. Comparative analysis of salivary proteins of different aphids and other insects with A. gossypii revealed that 183 and 88 orthologous clusters were common in the Aphididae and non-Aphididae groups, respectively. The structure prediction for highly expressed salivary proteins indicated that most possess an intrinsically disordered region. These results provide valuable reference data for exploring novel functions of salivary proteins in A. gossypii with their host interactions. The identified proteins may help develop a sustainable way to manage aphid pests.


Assuntos
Afídeos , Proteínas de Insetos , Glândulas Salivares , Transcriptoma , Animais , Afídeos/genética , Afídeos/metabolismo , Glândulas Salivares/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo , Gossypium/genética , Gossypium/metabolismo , Perfilação da Expressão Gênica
12.
Heliyon ; 10(11): e31976, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38868054

RESUMO

The cowpea aphid (Aphis cracivora) is a cosmopolitan insect pest that causes economic damage on cowpea. Although the pest persists at all the growth stages of the crop, in West Africa, aphids are the only major insect pests that farmers regularly control at the vegetative stage. Thus, deploying aphid-resistant crop varieties can reduce farmers' expenditure on insecticide. The availability of different biotypes of the pest and reports of resistance breakdown necessitates pyramiding of sources of aphid resistance to develop a more robust genotype for durable resistance. Two aphid-resistance genes, sourced from SARC-1-57-2 and IT97K-556-6, were introgressed through gene pyramiding technique into a farmers' preferred cowpea variety, Zaayura, using marker-assisted backcrossing. A simple sequence repeat (SSR) marker, CP 171F/172R, and an allele-specific single nucleotide polymorphism (SNP) marker, 1_0912, were used for foreground selection of the SARC-1-57-2 and IT97K-556-6 aphid resistance genes, respectively. A stepwise backcross approach was used to introgress the major aphid resistance QTL (QAc-vu7.1) from IT97K-556-6 into Zaayura using the marker 1_0912 coupled with intermittent screening under artificial aphid infestation. After the fourth backcross generation, three heterozygous BC4F1 of Zaayura/TT97K-556-6 were intercrossed to Zaayura Pali to develop intercross F1 (ICF1). Three true ICF1 hybrids allowed to self to produce ICF2. Five (5) out of 48 ICF2 plants which were genotyped with the two foreground markers had the two aphid resistance genes fixed in the double homozygous dominant state. For background selection, out of 192 allele-specific markers screened, only 47 polymorphic markers were identified and used for the background analysis of the pyramided lines. The recurrent parent genome recovery ranged from 72 to 93.8 %. ICF2_Zaa/556/SARC-P6 had the highest recurrent parent genome and the least heterozygosity among the five improved lines. The five pyramided lines showed superior resistance under artificial aphid infestation as compared to the two donor parents with damage scores ranging from 2.0 to 2.3. On the field, however, there were no significant differences between the pyramided lines and their recurrent parent for all the agronomic traits measured except for grain yield. The pyramided lines do not only stand the chance of being released as new varieties but are also valuable genetic resources for other breeding programs that seek to improve cowpea for aphid resistance.

13.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891989

RESUMO

Negeviruses are insect-specific enveloped RNA viruses that exhibit a wide geographic distribution. A novel nege-like virus, tentatively named Aphis gossypii nege-like virus (AGNLV, GenBank: OR880429.1), was isolated from aphids (Aphis gossypii) in Lijiang City, Yunnan, China. AGNLV has a genome sequence of 9258 nt (excluding the polyA tail) encoding three open reading frames (ORFs). ORF1 (7149 nt) encodes a viral methyltransferase, a viral RNA helicase, and an RNA-dependent RNA polymerase. ORF2 (1422 nt) encodes a DiSB-ORF2_chro domain and ORF3 encodes an SP24 domain. The genome sequence of AGNLV shares the highest nucleotide identity of 60.0% and 59.5% with Wuhan house centipede virus 1 (WHCV1) and Astegopteryx formosana nege-like virus (AFNLV), respectively. Phylogenetic analysis based on the RNA-dependent RNA polymerase shows that AGNLV is clustered with other negeviruses and nege-like viruses discovered in aphids, forming a distinct "unclassified clade". Interestingly, AGNLV only encodes three ORFs, whereas AFNLV and WHCV1 have four ORFs. Structure and transmembrane domain predictions show the presence of eight alpha helices and five transmembrane helices in the AGNLV ORF3. Translational enhancement of the AGNLV 5' UTR was similar to that of the 5' UTR of plant viruses. Our findings provide evidence of the diversity and structure of nege-like viruses and are the first record of such a virus from a member of the genus Aphis.


Assuntos
Afídeos , Genoma Viral , Fases de Leitura Aberta , Filogenia , Animais , Afídeos/virologia , China , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Proteínas Virais/química , Vírus de Insetos/genética , Vírus de Insetos/isolamento & purificação , Vírus de Insetos/classificação , RNA Viral/genética
14.
J Econ Entomol ; 117(4): 1493-1502, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38935064

RESUMO

Pyriproxyfen (PPF) has been shown to affect the pupal stage and ecdysone levels in holometabolous insects, such as silkworms and mealworms. It remains unknown whether it affects hemimetabolous insects with their hormone levels in insects lacking a pupal stage. In this laboratory study, bioassays were conducted to investigate the effects of varying doses of PPF on Aphis craccivora Koch (Hemiptera: Aphididae). Ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the types and titers of juvenile hormone (JH) and 20-hydroxyecdysone (20E). Additionally, the effects of PPF on A. craccivora reproduction and molting, as well as its influence on relevant gene expression, were examined. The results revealed LC50 and LC90 values of 3.84 and 7.49 mg/l for PPF, respectively, after 48 h of exposure. The results demonstrated a significant reduction in the titer of JH III and a significant increase in the titer of 20E following treatment with PPF. However, there was no significant decrease observed in the titer of JH III skipped bisepoxide (JH SB3). A sublethal concentration of PPF was found to inhibit Krüppel homolog 1 (kr-h1) gene expression and reduce aphid reproduction, but it did not significantly impact ecdysone receptor expression and aphid molting. The results of this study demonstrate that PPF exhibits a lethal effect on aphids, thereby providing an effective means of control. Additionally, sublethal concentrations of PPF have been found to inhibit the JH in aphids, resulting in a decline in their reproductive ability and achieving the desired control objectives.


Assuntos
Afídeos , Hormônios Juvenis , Piridinas , Animais , Afídeos/efeitos dos fármacos , Afídeos/crescimento & desenvolvimento , Hormônios Juvenis/farmacologia , Piridinas/farmacologia , Ecdisterona/farmacologia , Muda/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Feminino , Inseticidas/farmacologia
15.
Front Plant Sci ; 15: 1394153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812733

RESUMO

Ageratina adenophora can enhance its invasive ability by using beneficial rhizosphere bacteria. Bacillus cereus is able to promote plant growth and provide a positive feedback effect to A. adenophora. However, the interaction between A. adenophora and B. cereus under the influence of native polyphagous insect feeding is still unclear. In this study, Eupatorium lindleyanum, a local species closely related to A. adenophora, was used as a control, aimed to compare the content of B. cereus in the roots of A. adenophora and rhizosphere soil after different densities of Aphis gossypii feeding, and then investigated the variations in the population of A. gossypii and soil characteristics after the addition of B. cereus. The result showed that B. cereus content in the rhizosphere soil and root of A. adenophora increased significantly under A. gossypii feeding compared with local plants, which also led to the change of α-diversity and ß-diversity of the bacterial community, as well as the increase in nitrate nitrogen (NO3 -N) content. The addition of B.cereus in the soil could also inhibit the population growth of A. gossypii on A. adenophora and increase the content of ammonium nitrogen (NH4 +-N) in the soil. Our research demonstrated that B. cereus enhances the ability of A. adenophora to resist natural enemy by increasing soil ammonium nitrogen (NH4 +-N) and accumulating other beneficial bacteria, which means that rhizosphere microorganisms help invasive plants defend themselves against local natural enemies by regulating the soil environment.

16.
Nat Prod Res ; : 1-6, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726913

RESUMO

Aphid population's reduction occurs through chemical management, but the indiscriminate use of these products can cause environmental impacts and health risks. This study aimed to determine the insecticidal effects of essential oils and plant extracts as an alternative for aphid control management. The experimental design was entirely randomised in a 5x5 factorial scheme with five replications. Essential oils of rosemary, citronella, corn mint, and hydroethanolic extracts of garlic and cinnamon at five concentrations (0, 10, 20, 40, 80 µL.L-1) were used. In the exposure period of 96 h, the cinnamon hydroethanolic extract and the essential oil of corn mint (Mentha arvensis) showed a greater effect on aphid mortality. The other products evaluated showed lower mortalities but with the potential to be effective with dosages above 80 µL.L-1.

17.
J Econ Entomol ; 117(3): 809-816, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38568949

RESUMO

In this study, we investigated the biological aspects and predation efficiency of 3 aphidophagous ladybird beetles, Coccinella novemnotata, Hippodamia variegata, and Coccinella septempunctata, on the cotton aphid, Aphis gossypii, reared on cucumber plants (Cucumis sativus L. cultivar barracuda) under laboratory conditions. The developmental periods of C. novemnotata, H. variegata, and C. septempunctata were observed to be 16.00 ±â€…0.25, 16.00 ±â€…0.25, and 20.58 ±â€…0.40 days, respectively. The larvae of these ladybird beetles consumed an average of 218.93 ±â€…8.86, 254.77 ±â€…8.86, and 537.36 ±â€…10.49 aphids, respectively. Fourth-instar larvae were particularly efficient, consuming 53.68%, 52.68%, and 52.64% of total aphids for C. novemnotata, H. variegata, and C. septempunctata, respectively. Adult emergence rates were promising, with 91.67%, 100.00%, and 92.86%, accompanied by sex ratios of 63.64%, 53.84%, and 61.54%, respectively. Notably, a single female of C. novemnotata, H. variegata, and C. septempunctata consumed an average of 2,215.30, 2,232.00, and 3,364.50 aphids, respectively, over its lifespan. Coccinella septempunctata demonstrated the highest predation efficiency among the 3 species, suggesting its potential for biological control of A. gossypii in both open fields and greenhouses, promoting sustainable agricultural practices.


Assuntos
Afídeos , Besouros , Larva , Controle Biológico de Vetores , Comportamento Predatório , Animais , Afídeos/fisiologia , Besouros/fisiologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Cucumis sativus , Feminino , Masculino , Cadeia Alimentar , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia
18.
Molecules ; 29(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611736

RESUMO

Thuja occidentalis L. essential oil (EOTO) and its compounds, such as terpinyl acetate, bornyl acetate, and ß-thujone, are claimed to be highly effective against some storage pests, sanitary insects, or pests of fruit trees, while data about its use in protecting field crops are very scarce. There is also a lack of information in the literature about the insecticidal value of water extracts from T. occidentalis (WETOs). Both essential oils (EOs) and water extracts (WEs) from various plants have advantages and disadvantages in terms of their use as insecticides. EOs are generally more effective, but their preparation is more complicated and quite expensive. In turn, WEs are simple to prepare and cheap, but they often have limited effectiveness. Moreover, significant differences in responses exist depending on the species of the donor plant, the method of preparing the extract, its concentration, the species of the pest being controlled, the developmental stage, and even the gender of the pest. The goals of the research were to assess the effect of EOTO and WETOs prepared from dry and fresh matter on the mortality, feeding, and body mass changes of important crop pests, i.e., the black bean aphid, pea leaf weevil, and Colorado potato beetle (CPB), respectively, as well as on the mortality and voracity of non-target organism Asian lady beetle young larvae. EOTO showed significant aphicidal activity with LC50 = 0.8267% and 0.2453% after 42 h of the experiment for nymphs and wingless females of black bean aphid, respectively. Adults of CPB were more resistant to EOTO than aphids, with LC50 values for females equal to 1.5327% and 1.3113% after 48 h and after 72 h of the experiment. There was no significant effect of EOTO on CPB foraging. Calculated LC50 values for pea leaf weevil adults were lower than those for CPB (0.9638% and 0.8573% for males after 12 h and 24 h, respectively). In the case of this pest, a clear reduction in foraging was obtained, with higher concentrations of EOTO resulting in more pronounced reductions in foraging behavior. Concentrations of EOTO above 0.5%, which showed efficacy against the aphid, were lethal to 3-day-old larvae of the Asian lady beetle. WETOs, in turn, showed significant potential in inhibiting adult pea leaf weevil feeding, with very low or no effectiveness in reducing A. fabae and CPB, respectively.


Assuntos
Afídeos , Besouros , Inseticidas , Óleos Voláteis , Thuja , Gorgulhos , Humanos , Adulto , Feminino , Masculino , Animais , Óleos Voláteis/farmacologia , Inseticidas/farmacologia
19.
Insects ; 15(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38667377

RESUMO

The toxicity and sublethal effects of three insecticides (spirotetramat, cyantraniliprole, and pymetrozine) on Aphis gossypii, a major agricultural pest, were investigated. The nymphal stage showed greater susceptibility than the adult stage to all the insecticides, with a difference of up to 8.9 times at the LC50 of spirotetramat. The effects of sublethal concentrations (LC10, LC30, LC50, and LC70) of the insecticides on the on the developmental period, survival rate, adult longevity, fecundity, and deformity rate were compared with those of the control. Compared with the control, cyantraniliprole and pymetrozine did not significantly affect the developmental period in the parental or F1 generation when applied at the nymphal stage at any concentration. Nonviable nymphs occurred in the F1 generation when both nymphs and adults were treated with spirotetramat and cyantraniliprole but not in the F2 generation. The age-specific maternity (lxmx) of A. gossypii treated with sublethal concentrations (LC10, LC30) decreased with increasing concentration. Spirotetramat at the LC30 resulted in significant differences in all life table parameters (R0, rm, λ, T, DT) compared with those of the control. Similarly, compared with that of the control (43.8), the net reproductive rate (R0) significantly decreased for all the insecticides except cyantraniliprole at the LC10 (37.5). Therefore, this study indicated that sublethal concentrations (over the LC30) of spirotetramat, cyantraniliprole, or pymetrozine might be useful for the density management of A. gossypii.

20.
Bull Entomol Res ; 114(2): 293-301, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600043

RESUMO

One of the key reasons for the poor performance of natural enemies of honeydew-producing insect pests is mutualism between ants and some aphid species. The findings demonstrated that red wood ant, Formica rufa Linnaeus (Hymenoptera: Formicidae) had a deleterious impact on different biological parameters of the lady beetle, Hippodamia variegata Goeze (Coleoptera: Coccinellidae). H. variegata laid far fewer eggs in ant-tended aphid colonies, laying nearly 2.5 times more eggs in ant absence. Ants antennated and bit the lady beetle eggs, resulting in significantly low egg hatching of 66 per cent over 85 per cent in ant absent treatments. The presence of ants significantly reduced the development of all larval instars. The highest reduction was found in the fourth larval instar (31.33% reduction), and the lowest in the first larval instar (20% reduction). Later larval instars were more aggressively attacked by ants than earlier instars. The first and second larval instars stopped their feeding and movement in response to ant aggression. The third and fourth larval instars modified their mobility, resulting in increased ant aggression towards them. Adult lady beetles were shown to be more vulnerable to ant attacks than larvae. However, H. variegata adults demonstrated counterattacks in the form of diverse defensive reaction behaviours in response to F. rufa aggression.


Assuntos
Formigas , Besouros , Larva , Animais , Formigas/fisiologia , Besouros/fisiologia , Besouros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Afídeos/fisiologia , Agressão , Feminino , Simbiose , Oviposição , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA