Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(6): 2338-2343, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30651313

RESUMO

In most flowering plants, the asymmetric cell division of the zygote is the initial step in establishing the apical-basal axis of the mature plant. The zygote is polarized, possessing the nucleus at the apical tip and large vacuoles at the basal end. Despite their known polar localization, whether the positioning of the vacuoles and the nucleus is coordinated and what the role of the vacuole is in the asymmetric zygotic division remain elusive. In the present study, we utilized a live-cell imaging system to visualize the dynamics of vacuoles during the entire process of zygote polarization in Arabidopsis Image analysis revealed that the vacuoles formed tubular strands around the apically migrating nucleus. They gradually accumulated at the basal region and filled the space, resulting in asymmetric distribution in the mature zygote. To assess the role of vacuoles in the zygote, we screened various vacuole mutants and identified that shoot gravitropism2 (sgr2), in which the vacuolar structural change was impaired, failed to form tubular vacuoles and to polarly distribute the vacuole. In sgr2, large vacuoles occupied the apical tip and thus nuclear migration was blocked, resulting in a more symmetric zygotic division. We further observed that tubular vacuole formation and asymmetric vacuolar distribution both depended on the longitudinal array of actin filaments. Overall, our results show that vacuolar dynamics is crucial not only for the polar distribution along actin filaments but also for adequate nuclear positioning, and consequently zygote-division asymmetry.


Assuntos
Arabidopsis/fisiologia , Divisão Celular Assimétrica , Polaridade Celular , Vacúolos/metabolismo , Zigoto/citologia , Zigoto/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Imunofluorescência , Mutação
2.
Planta ; 248(2): 307-322, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29721610

RESUMO

MAIN CONCLUSION: Mitogen-activated protein kinases seem to mark genes which are set up to be activated in daughter cells and thus they may play a direct role in cellular patterning during embryogenesis. Embryonic patterning starts very early and after the first division of zygote different genes are expressed in apical and basal cells. However, there is an ongoing debate about the way these different transcription patterns are established during embryogenesis. The presented data indicate that mitogen-activated protein kinases (MAPKs) concentrate in the vicinity of chromosomes and form visible foci there. Cells in the apical and basal regions differ in number of foci observed during the metaphase which suggests that cellular patterning may be determined by activation of diverse MAPK-dependent genes. Different number of foci in each group of separating chromatids and the specified direction of these mitoses in apical-basal axis indicate that the unilateral auxin accumulation in a single cell may regulate the number of foci in each group of chromatids. Thus, we put forward a hypothesis that MAPKs localized in the vicinity of chromosomes during mitosis mark those genes which are set up to be activated in daughter cells after division. It implies that the chromosomal localization of MAPKs may be one of the mechanisms involved in establishment of cellular patterns in some plant species.


Assuntos
Cromossomos de Plantas/genética , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Plantas/metabolismo , Vicia faba/enzimologia , Núcleo Celular/metabolismo , Cotilédone/citologia , Cotilédone/embriologia , Cotilédone/enzimologia , Cotilédone/genética , Eucromatina/genética , Heterocromatina/genética , Ácidos Indolacéticos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Mitose , Fosforilação , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/embriologia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Vicia faba/citologia , Vicia faba/embriologia , Vicia faba/genética , Zigoto
3.
Proc Natl Acad Sci U S A ; 113(49): 14157-14162, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27911812

RESUMO

The asymmetric cell division of the zygote is the initial and crucial developmental step in most multicellular organisms. In flowering plants, whether zygote polarity is inherited from the preexisting organization in the egg cell or reestablished after fertilization has remained elusive. How dynamically the intracellular organization is generated during zygote polarization is also unknown. Here, we used a live-cell imaging system with Arabidopsis zygotes to visualize the dynamics of the major elements of the cytoskeleton, microtubules (MTs), and actin filaments (F-actins), during the entire process of zygote polarization. By combining image analysis and pharmacological experiments using specific inhibitors of the cytoskeleton, we found features related to zygote polarization. The preexisting alignment of MTs and F-actin in the egg cell is lost on fertilization. Then, MTs organize into a transverse ring defining the zygote subapical region and driving cell outgrowth in the apical direction. F-actin forms an apical cap and longitudinal arrays and is required to position the nucleus to the apical region of the zygote, setting the plane of the first asymmetrical division. Our findings show that, in flowering plants, the preexisting cytoskeletal patterns in the egg cell are lost on fertilization and that the zygote reorients the cytoskeletons to perform directional cell elongation and polar nuclear migration.


Assuntos
Citoesqueleto de Actina/fisiologia , Arabidopsis/embriologia , Polaridade Celular , Microtúbulos/fisiologia , Sementes/fisiologia , Divisão Celular , Fertilização
4.
Annu Rev Cell Dev Biol ; 32: 47-75, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27576120

RESUMO

Land plants can grow to tremendous body sizes, yet even the most complex architectures are the result of iterations of the same developmental processes: organ initiation, growth, and pattern formation. A central question in plant biology is how these processes are regulated and coordinated to allow for the formation of ordered, 3D structures. All these elementary processes first occur in early embryogenesis, during which, from a fertilized egg cell, precursors for all major tissues and stem cells are initiated, followed by tissue growth and patterning. Here we discuss recent progress in our understanding of this phase of plant life. We consider the cellular basis for multicellular development in 3D and focus on the genetic regulatory mechanisms that direct specific steps during early embryogenesis.


Assuntos
Morfogênese , Sementes/embriologia , Padronização Corporal , Nicho de Células-Tronco
5.
Dev Biol ; 419(1): 78-84, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27207388

RESUMO

Vascular plants have an open body plan and continuously generate new axes of growth, such as shoot or root branches. Apical-to-basal transport of the hormone auxin is a hallmark of every axis, and the resulting pattern of auxin distribution affects plant development across scales, from overall architecture to cellular differentiation. How the first axis is initiated in the early embryo is a long-standing question. While our knowledge is still sparse, some of the key players of axialization have emerged, and recent work points to specific models for connecting cellular polarity to the asymmetric division of the zygote and domain specific gene expression to the organization of basipetal auxin flux.


Assuntos
Desenvolvimento Vegetal , Plantas/embriologia , Arabidopsis/embriologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/fisiologia , Divisão Celular , Polaridade Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Plantas/genética , Fatores de Transcrição/fisiologia , Zigoto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA