Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nutrients ; 16(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39275181

RESUMO

Pinus koraiensis (PK) leaf extract, derived from Korean pine byproducts, holds promise for alleviating postprandial hyperlipidemia. In this study, we investigated the potential of PK leaf extract for modulating postprandial hyperlipidemia in adults with normal or borderline fasting triglyceride levels. In a randomized, double-blind, parallel design, 70 subjects were randomly assigned to either the placebo or PK group for 4 weeks. After 4 weeks of consuming PK leaf extract, the results indicated a trend toward decreased serum apolipoprotein B-100 (ApoB100) levels 2 h after a high-fat challenge. Furthermore, significant improvements were observed in the incremental area under the curve (iAUC) at 0-4 h and 2-4 h compared to baseline, particularly among individuals with a higher body weight (>61.35 kg) and daily caloric intake (>1276.5 kcal). Based on these findings, PK leaf extract may have beneficial effects on postprandial lipoprotein metabolism, especially among individuals with a relatively high body weight and caloric intake.


Assuntos
Apolipoproteína B-100 , Metabolismo dos Lipídeos , Pinus , Extratos Vegetais , Folhas de Planta , Período Pós-Prandial , Humanos , Método Duplo-Cego , Pinus/química , Masculino , Extratos Vegetais/farmacologia , Folhas de Planta/química , Feminino , Adulto , Apolipoproteína B-100/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Pessoa de Meia-Idade , Dieta Hiperlipídica , Triglicerídeos/sangue , Adulto Jovem , Voluntários Saudáveis , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/sangue
2.
J Clin Med ; 13(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39274442

RESUMO

Over 50% of patients who take statins are still at risk of developing atherosclerotic cardiovascular disease (ASCVD) and do not achieve their goal LDL-C levels. This residual risk is largely dependent on triglyceride-rich lipoproteins (TRL) and their remnants. In essence, remnant cholesterol-rich chylomicron (CM) and very-low-density lipoprotein (VLDL) particles play a role in atherogenesis. These remnants increase when lipoprotein lipase (LPL) activity is inhibited. ApoCIII has been thoroughly studied as a chief inhibitor and therapeutic options to curb its effect are available. On top of apoCIII regulation of LPL activity, there is a more precise control of LPL in various tissues, which makes it easier to physiologically divide the TRL burden according to the body's requirements. In general, oxidative tissues such as skeletal and cardiac muscle preferentially take up lipids during fasting. Conversely, LPL activity in adipocytes increases significantly after feeding, while its activity in oxidative tissues decreases concurrently. This perspective addresses the recent improvements in our understanding of circadian LPL regulations and their therapeutic implications. Three major tissue-specific lipolysis regulators have been identified: ANGPTL3, ANGPTL4, and ANGPTL8. Briefly, during the postprandial phase, liver ANGPTL8 acts on ANGPTL3 (which is released continuously from the liver) to inhibit LPL in the heart and muscle through an endocrine mechanism. On the other hand, when fasting, ANGPTL4, which is released by adipocytes, inhibits lipoprotein lipase in adipose tissue in a paracrine manner. ANGPTL3 inhibitors may play a therapeutic role in the treatment of hypertriglyceridemia. Several approaches are under development. We look forward to future studies to clarify (a) the nature of hormonal and nutritional factors that determine ANGPTL3, 4, and 8 activities, along with what long-term impacts may be expected if their regulation is impaired pharmacologically; (b) the understanding of the quantitative hierarchy and interaction of the regulatory actions of apoCIII, apoAV, and ANGPTL on LPL activity; (c) strategies for the safe and proper treatment of postprandial lipemia; and (d) the effect of fructose restriction on ANGPTL3, ANGPTL4, and ANGPTL8.

3.
Int J Biol Macromol ; 277(Pt 4): 134330, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089550

RESUMO

Spinal cord injury (SCI) patients have an increased susceptibility to coronary heart disease (CHD) due to dysregulated lipid deposition. We conducted a comprehensive investigation to gain insights into the specific roles of Apolipoprotein B-100 (APOB-100) in the development of CHD in patients suffering from SCI. First, we established an SCI rat model through semitransection. APOB-100 expression in plasma exosomes obtained from patients were determined. Subsequently, we found APOB-100 affected macrophage polarization when treating co-cultured neurons/macrophages lacking Sortilin with extracellular vesicles derived from SCI rats, where APOB-100 co-immunoprecipitated with Sortilin. Moreover, APOB-100 upregulation reduced neuronal cell viability and triggered apoptosis by upregulating Sortilin, leading to a decline in the Basso, Beattie, and Bresnahan (BBB) scale, exacerbation of neuron injury, increased macrophage infiltration, and elevated blood lipid-related indicators in SCI rats, which could be reversed by silencing Sortilin. In conclusion, APOB-100 from post-SCI patients' extracellular vesicles upregulates Sortilin, thereby endangering those patients to CHD.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Apolipoproteína B-100 , Doença das Coronárias , Vesículas Extracelulares , Traumatismos da Medula Espinal , Animais , Apolipoproteína B-100/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Ratos , Doença das Coronárias/metabolismo , Doença das Coronárias/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Masculino , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Neurônios/metabolismo , Feminino , Macrófagos/metabolismo , Pessoa de Meia-Idade , Modelos Animais de Doenças , Apoptose , Ratos Sprague-Dawley
4.
Front Cardiovasc Med ; 11: 1381520, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952543

RESUMO

In recent years, the role of macrophages as the primary cell type contributing to foam cell formation and atheroma plaque development has been widely acknowledged. However, it has been long recognized that diffuse intimal thickening (DIM), which precedes the formation of early fatty streaks in humans, primarily consists of lipid-loaded smooth muscle cells (SMCs) and their secreted proteoglycans. Recent studies have further supported the notion that SMCs constitute the majority of foam cells in advanced atherosclerotic plaques. Given that SMCs are a major component of the vascular wall, they serve as a significant source of microvesicles and exosomes, which have the potential to regulate the physiology of other vascular cells. Notably, more than half of the foam cells present in atherosclerotic lesions are of SMC origin. In this review, we describe several mechanisms underlying the formation of intimal foam-like cells in atherosclerotic plaques. Based on these mechanisms, we discuss novel therapeutic approaches that have been developed to regulate the generation of intimal foam-like cells. These innovative strategies hold promise for improving the management of atherosclerosis in the near future.

5.
Metabolites ; 14(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38393015

RESUMO

ApoB is the main protein of triglyceride-rich lipoproteins and is further divided into ApoB48 in the intestine and ApoB100 in the liver. Very low-density lipoprotein (VLDL) is produced by the liver, contains ApoB100, and is metabolized into its remnants, intermediate-density lipoprotein (IDL) and low-density lipoprotein (LDL). ApoB100 has been suggested to play a crucial role in the formation of the atherogenic plaque. Apart from being a biomarker of atherosclerosis, ApoB100 seems to be implicated in the inflammatory process of atherosclerosis per se. In this review, we will focus on the structure, the metabolism, and the function of ApoB100, as well as its role as a predictor biomarker of cardiovascular risk. Moreover, we will elaborate upon the molecular mechanisms regarding the pathophysiology of atherosclerosis, and we will discuss the disorders associated with the APOB gene mutations, and the potential role of various drugs as therapeutic targets.

6.
Mol Neurobiol ; 61(9): 6675-6687, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38337131

RESUMO

This study aims to explore the impacts of ApoB-100/SORT1-mediated immune microenvironment during acute spinal cord injury (SCI), and to investigate the potential mechanism. CB57BL/6 mice underwent moderate thoracic contusion injury to establish the SCI animal model, and received ApoB-100 lentivirus injection to interfere ApoB-100 level. Functional recovery was assessed using the Basso, Beattie, and Bresnahan (BBB) score and footprint analysis. Transmission electron microscopy was applied to observe the ultrastructure of the injured spinal cord tissue. Hematoxylin-eosin (HE) staining and Perls staining were conducted to assess histological changes and iron deposition. Biochemical factor and cytokines were detected using their commercial kits. M1/M2 macrophage markers were detected by immunofluorescence assay in vivo and by flow cytometry in vitro. HT22 neurons were simulated by lipopolysaccharide (LPS), followed by incubation with polarized macrophage medium to simulate the immune microenvironment of injured spinal cord in vitro. The local immune microenvironment is changed in SCI mice, accompanied with the occurrence of oxidative stress and the elevation of both M1 and M2 macrophages. Knockdown of ApoB-100 ameliorates oxidative stress and lipid disorder, and inhibits inflammation and ferroptosis in SCI mice. Importantly, knockdown of ApoB-100 can partly restrict M1 macrophages but does not change M2 macrophage proportion in SCI mice. Further, M1 macrophages are observed to attenuate the inflammatory response, oxidative stress, and ferroptosis levels of LPS-induced HT22 cells, which is further strengthened by SORT1 knockdown. Blockage of ApoB-100/SORT1-mediated immune microenvironment plays a protective role against SCI via inhibiting oxidative stress, inflammation, lipid disorders, and ferroptosis, providing novel insights of the targeted therapy of SCI.


Assuntos
Apolipoproteína B-100 , Ferroptose , Inflamação , Macrófagos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Traumatismos da Medula Espinal , Animais , Feminino , Camundongos , Apolipoproteína B-100/metabolismo , Ferroptose/fisiologia , Inflamação/patologia , Inflamação/metabolismo , Macrófagos/metabolismo , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/imunologia
7.
Mol Nutr Food Res ; 68(1): e2300508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933702

RESUMO

SCOPE: Extra virgin olive oil has numerous cardiopreventive effects, largely due to its high content of (poly)phenols such as hydroxytyrosol (HT). However, some animal studies suggest that its excessive consumption may alter systemic lipoprotein metabolism. Because human lipoprotein metabolism differs from that of rodents, this study examines the effects of HT in a humanized mouse model that approximates human lipoprotein metabolism. METHODS AND RESULTS: Mice are treated as follows: control diet or diet enriched with HT. Serum lipids and lipoproteins are determined after 4 and 8 weeks. We also analyzed the regulation of various genes and miRNA by HT, using microarrays and bioinformatic analysis. An increase in body weight is found after supplementation with HT, although food intake was similar in both groups. In addition, HT induced the accumulation of triacylglycerols but not cholesterol in different tissues. Systemic dyslipidemia after HT supplementation and impaired glucose metabolism are observed. Finally, HT modulates the expression of genes related to lipid metabolism, such as Pltp or Lpl. CONCLUSION: HT supplementation induces systemic dyslipidemia and impaired glucose metabolism in humanized mice. Although the numerous health-promoting effects of HT far outweigh these potential adverse effects, further carefully conducted studies are needed.


Assuntos
Dislipidemias , Álcool Feniletílico , Humanos , Camundongos , Animais , Azeite de Oliva/farmacologia , Dislipidemias/etiologia , Álcool Feniletílico/farmacologia , Lipoproteínas , Modelos Animais de Doenças , Glucose
8.
J Clin Med ; 12(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37685728

RESUMO

The availability of sugar has expanded over the past 50 years, due to improved industrial processes and corn subsidies, particularly in the form of sweetened beverages. This correlates with a surge in the prevalence of cardiometabolic disorders, which has brought this issue back into the spotlight for public health. In this narrative review, we focus on the role of fructose in the genesis of cardiometabolic dyslipidemia (an increase in serum triglyceride-rich lipoproteins (TRL): VLDL, chylomicrons (CM), and their remnants) bringing together the most recent data on humans, which demonstrates the crucial interaction between glucose and fructose, increasing the synthesis while decreasing the catabolism of these particles in a synergistic downward spiral. After reviewing TRL metabolism, we discuss the fundamental principles governing the metabolism of fructose in the intestine and liver and the effects of dysregulated fructolysis, in conjunction with the activation of carbohydrate-responsive element-binding protein (ChREBP) by glucose and the resulting crosstalk. The first byproduct of fructose catabolism, fructose-1-P, is highlighted for its function as a signaling molecule that promotes fat synthesis. We emphasize the role of fructose/glucose interaction in the liver, which enhances de novo lipogenesis, triglyceride (TG) synthesis, and VLDL production. In addition, we draw attention to current research that demonstrates how fructose affects the activity of lipoprotein lipase by increasing the concentration of inhibitors such as apolipoprotein CIII (apoCIII) and angiopoietin-like protein 3 (ANGPTL3), which reduce the catabolism of VLDL and chylomicrons and cause the building up of their atherogenic remnants. The end outcome is a dual, synergistic, and harmful action that encourages atherogenesis. Thus, considering the growing concerns regarding the connection between sugar consumption and cardiometabolic disease, current research strongly supports the actions of public health organizations aimed at reducing sugar intake, including dietary guidance addressing "safe" limits for sugar consumption.

9.
J Clin Med ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37445434

RESUMO

The residual risk for arteriosclerotic cardiovascular disease after optimal statin treatment may amount to 50% and is the consequence of both immunological and lipid disturbances. Regarding the lipid disturbances, the role of triglyceride-rich lipoproteins (TRLs) and their remnants has come to the forefront in the past decade. Triglycerides (TGs) stand as markers of the remnants of the catabolism of TRLs that tend to contain twice as much cholesterol as compared to LDL. The accumulation of circulating TRLs and their partially lipolyzed derivatives, known as "remnants", is caused mainly by ineffective triglyceride catabolism. These cholesterol-enriched remnant particles are hypothesized to contribute to atherogenesis. The aim of the present narrative review is to briefly summarize the main pathways of TRL metabolism, bringing to the forefront the newly discovered role of apolipoproteins, the key physiological function of lipoprotein lipase and its main regulators, the importance of the fluxes of these particles in the post-prandial period, their catabolic rates and the role of apo CIII and angiopoietin-like proteins in the partition of TRLs during the fast-fed cycle. Finally, we provide a succinct summary of the new and old therapeutic armamentarium and the outcomes of key current trials with a final outlook on the different methodological approaches to measuring TRL remnants, still in search of the gold standard.

10.
Elife ; 122023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37252755

RESUMO

Extracellular vesicles (EVs) are released by all cells into biofluids such as plasma. The separation of EVs from highly abundant free proteins and similarly sized lipoproteins remains technically challenging. We developed a digital ELISA assay based on Single Molecule Array (Simoa) technology for ApoB-100, the protein component of several lipoproteins. Combining this ApoB-100 assay with previously developed Simoa assays for albumin and three tetraspanin proteins found on EVs (Ter-Ovanesyan, Norman et al., 2021), we were able to measure the separation of EVs from both lipoproteins and free proteins. We used these five assays to compare EV separation from lipoproteins using size exclusion chromatography with resins containing different pore sizes. We also developed improved methods for EV isolation based on combining several types of chromatography resins in the same column. We present a simple approach to quantitatively measure the main impurities of EV isolation in plasma and apply this approach to develop novel methods for enriching EVs from human plasma. These methods will enable applications where high-purity EVs are required to both understand EV biology and profile EVs for biomarker discovery.


Assuntos
Vesículas Extracelulares , Lipoproteínas , Humanos , Apolipoproteína B-100/análise , Apolipoproteína B-100/metabolismo , Lipoproteínas/metabolismo , Vesículas Extracelulares/metabolismo , Cromatografia em Gel , Ensaio de Imunoadsorção Enzimática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA