Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Appl Environ Microbiol ; : e0047424, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162403

RESUMO

The continued emergence of antibiotic resistance among bacterial pathogens remains a significant challenge. Indeed, the enhanced antibiotic resistance profiles of contemporary pathogens often restrict the number of suitable molecular tools that are available. We have constructed a series of plasmids that confer resistance to two infrequently used antibiotics with variants of each plasmid backbone incorporating several regulatory control systems. The regulatory systems include both commonly used systems based on the lac- and arabinose-controlled promoters found in Escherichia coli, as well as less frequently used systems that respond to tetracycline/anhydrotetracycline and toluic acid. As a test case, we demonstrate the utility of these plasmids for regulated and tunable gene expression in a multidrug-resistant (MDR) isolate of Acinetobacter baumannii, strain AB5075-UW. The plasmids include derivatives of a freely replicating, broad-host-range plasmid allowing for inducible gene expression as well as a set of vectors for introducing genetic material at the highly conserved Tn7-attachment site. We also modified a set of CRISPR-interference plasmids for use in MDR organisms, thus allowing researchers to more readily interrogate essential genes in currently circulating clinical isolates. These tools will enhance molecular genetic analyses of bacterial pathogens in situations where existing plasmids cannot be used due to their antibiotic resistance determinants or lack of suitable regulatory control systems. IMPORTANCE: Clinical isolates of bacterial pathogens often harbor resistance to multiple antibiotics, with Acinetobacter baumannii being a prime example. The drug-resistance phenotypes associated with these pathogens represent a significant hurdle to researchers who wish to study modern isolates due to the limited availability of plasmid tools. Here, we present a series of freely replicating and Tn7-insertion vectors that rely on selectable markers to less frequently encountered antibiotics, apramycin, and hygromycin. We demonstrate the utility of these plasmid tools through a variety of experiments looking at a multidrug-resistant strain of A. baumannii, strain AB5075. Strain AB5075 is an established model strain for present-day A. baumannii, due in part to its genetic tractability and because it is a representative isolate of the globally disseminated multidrug-resistant clade of A. baumannii, global clone 1. In addition to the drug-selection markers facilitating use in strains resistant to more commonly used antibiotics, the vectors allow for controllable expression driven by several regulatory systems, including isopropyl ß-D-1-thiogalactopyranoside (IPTG), arabinose, anhydrotetracycline, and toluic acid.

2.
J Med Microbiol ; 73(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973691

RESUMO

Introduction. Aminoglycoside antibiotics such as amikacin and kanamycin are important components in the treatment of Mycobacterium tuberculosis (Mtb) infection. However, more and more clinical strains are found to be aminoglycoside antibiotic-resistant. Apramycin is another kind of aminoglycoside antibiotic that is commonly used to treat infections in animals.Hypothesis. Apramycin may have in vitro activity against Mtb.Aim. This study aims to evaluate the efficacy of apramycin against Mtb in vitro and determine its epidemiological cut-off (ECOFF) value.Methodology. One hundred Mtb isolates, including 17 pansusceptible and 83 drug-resistant tuberculosis (DR-TB) strains, were analysed for apramycin resistance using the MIC assay.Results. Apramycin exhibited significant inhibitory activity against Mtb clinical isolates, with an MIC50 of 0.5 µg ml-1 and an MIC90 of 1 µg ml-1. We determined the tentative ECOFF value as 1 µg ml-1 for apramycin. The resistant rates of multidrug-resistant tuberculosis (MDR-TB), pre-extensively drug-resistant (pre-XDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) strains were 12.12 % (4/33), 20.69 % (6/29) and 66.67 % (14/21), respectively. The rrs gene A1401G is associated with apramycin resistance, as well as the cross-resistance between apramycin and other aminoglycosides.Conclusion. Apramycin shows high in vitro activity against the Mtb clinical isolates, especially the MDR-TB clinical isolates. This encouraging discovery calls for more research on the functions of apramycin in vivo and as a possible antibiotic for the treatment of drug-resistant TB.


Assuntos
Antituberculosos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Nebramicina , Nebramicina/análogos & derivados , Nebramicina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Humanos , Antituberculosos/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Farmacorresistência Bacteriana Múltipla
3.
Environ Res ; 252(Pt 3): 118930, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615788

RESUMO

Antibiotic resistance genes (ARGs) are a kind of emerging environmental contamination, and are commonly found in antibiotic application situations, attracting wide attention. Fish skin mucosal surface (SMS), as the contact interface between fish and water, is the first line of defense against external pollutant invasion. Antibiotics are widely used in aquaculture, and SMS may be exposed to antibiotics. However, what happens to SMS when antibiotics are applied, and whether ARGs are enriched in SMS are not clear. In this study, Zebrafish (Danio rerio) were exposed to antibiotic and antibiotic resistant bacteria in the laboratory to simulate the aquaculture situation, and the effects of SMS on the spread of ARGs were explored. The results showed that SMS maintained the stability of the bacterial abundance and diversity under apramycin (APR) and bacterial exposure effectively. Until 11 days after stopping APR exposure, the abundance of ARGs in SMS (mean value was 3.32 × 10-3 copies/16S rRNA copies) still did not recover to the initial stage before exposure, which means that enriched ARGs in SMS were persistently remained. Moreover, non-specific immunity played an important role in resisting infection of external contamination. Besides, among antioxidant proteins, superoxide dismutase showed the highest activity. Consequently, it showed that SMS became a barrier of antibiotic resistance genes under APR exposure, and ARGs in SMS were difficult to remove once colonized. This study provided a reference for understanding the transmission, enrichment process, and ecological impact of antibiotics and ARGs in aquatic environments.


Assuntos
Antibacterianos , Nebramicina , Pele , Peixe-Zebra , Animais , Peixe-Zebra/genética , Nebramicina/análogos & derivados , Nebramicina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Pele/efeitos dos fármacos , Pele/microbiologia , Resistência Microbiana a Medicamentos/genética , Mucosa/efeitos dos fármacos , Mucosa/microbiologia , Poluentes Químicos da Água/toxicidade
4.
Appl Microbiol Biotechnol ; 108(1): 304, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643456

RESUMO

Tobramycin is an essential and extensively used broad-spectrum aminoglycoside antibiotic obtained through alkaline hydrolysis of carbamoyltobramycin, one of the fermentation products of Streptoalloteichus tenebrarius. To simplify the composition of fermentation products from industrial strain, the main byproduct apramycin was blocked by gene disruption and constructed a mutant mainly producing carbamoyltobramycin. The generation of antibiotics is significantly affected by the secondary metabolism of actinomycetes which could be controlled by modifying the pathway-specific regulatory proteins within the cluster. Within the tobramycin biosynthesis cluster, a transcriptional regulatory factor TobR belonging to the Lrp/AsnC family was identified. Based on the sequence and structural characteristics, tobR might encode a pathway-specific transcriptional regulatory factor during biosynthesis. Knockout and overexpression strains of tobR were constructed to investigate its role in carbamoyltobramycin production. Results showed that knockout of TobR increased carbamoyltobramycin biosynthesis by 22.35%, whereas its overexpression decreased carbamoyltobramycin production by 10.23%. In vitro electrophoretic mobility shift assay (EMSA) experiments confirmed that TobR interacts with DNA at the adjacent tobO promoter position. Strains overexpressing tobO with ermEp* promoter exhibited 36.36% increase, and tobO with kasOp* promoter exhibited 22.84% increase in carbamoyltobramycin titer. When the overexpressing of tobO and the knockout of tobR were combined, the production of carbamoyltobramycin was further enhanced. In the shake-flask fermentation, the titer reached 3.76 g/L, which was 42.42% higher than that of starting strain. Understanding the role of Lrp/AsnC family transcription regulators would be useful for other antibiotic biosynthesis in other actinomycetes. KEY POINTS: • The transcriptional regulator TobR belonging to the Lrp/AsnC family was identified.  • An oxygenase TobO was identified within the tobramycin biosynthesis cluster. • TobO and TobR have significant effects on the synthesis of carbamoyltobramycin.


Assuntos
Actinobacteria , Actinomycetales , Engenharia Metabólica , Antibacterianos , Tobramicina
5.
J Pharm Biomed Anal ; 243: 116071, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452421

RESUMO

Combating antimicrobial resistance is a top priority worldwide involving a concerted action by several high-level institutions and organisations in the health sector. To ensure that a meaningful progress is achieved, several campaigns and political initiatives have been launched targeting the health professionals, the industry, the farmers, and the general public. The Regulation (EU) 2019/4 on medicated feed contains provisions for the limitation and control of the contamination of non-target compound feed with 24 antimicrobials. The purpose of this work was to develop a reliable and effective method for the determination of four aminoglycoside antibiotics (apramycin, paromomycin, tobramycin and neomycin) and spectinomycin in feed at cross-contamination level, where an absolute lack of suitable methods was identified. Four candidate methods described in the literature failed to provide adequate recoveries of all analytes. Therefore, an in-depth investigation was carried out to identify the bottleneck variable. The optimised method was then in-house validated and showed performance features appropriate for the intended purpose. The selected compounds could be analysed by LC-MS/MS in five animal feeds with LOQs between 2.6 and 9.2 µg kg-1 for the AGs and between 28 and 86 µg kg-1 for spectinomycin. Using isotopically labelled internal standards, the recovery rates varied from 63 % to 103 % and the intermediate precision (RSDip) varied from 1.1 % to 14 %. This work represents a step forward in the reliable determination of antibiotics in compound feed as the developed method has shown to be precise and sensitive. It is expected that this method gains wide acceptance and can supplement the legislation with effective control tools for antibiotic residues.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Espectinomicina , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Antibacterianos/análise , Aminoglicosídeos , Ração Animal/análise
6.
Heliyon ; 9(12): e22821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125473

RESUMO

Klebsiella pneumoniae are bacteria associated with respiratory tract infections and are increasingly becoming resistant to antibiotics, including carbapenems. Apramycin is a veterinary antibiotic that may have the potential to be re-purposed for use in human health, for example, for the treatment of respiratory tract infections after coupling to inhalable nanoparticles. In the present study, the antibiotic apramycin was formulated with single chain polymeric nanoparticles and tested in free and formulated forms against a set of 13 Klebsiella pneumoniae isolates (from the Netherlands and Pakistan) expressing different aminoglycoside resistance phenotypes. Minimum Inhibitory Concentration, Time Kill Kinetics and biofilm experiments were performed providing evidence for the potential efficacy of apramycin and apramycin-based nanomedicines for the treatment of human Klebsiella pneumonia infections.

7.
Eur J Clin Microbiol Infect Dis ; 42(7): 843-852, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37133639

RESUMO

Resistance of Acinetobacter baumannii to multiple clinically important antimicrobials has increased to very high rates in Greece, rendering most of them obsolete. The aim of this study was to determine the molecular epidemiology and susceptibilities of A. baumannii isolates collected from different hospitals across Greece. Single-patient A. baumannii strains isolated from blood cultures (n = 271), from 19 hospitals, in a 6-month period (November 2020-April 2021) were subjected to minimum inhibitory concentration determination and molecular testing for carbapenemase, 16S rRNA methyltransferase and mcr gene detection and epidemiological evaluation. 98.9% of all isolates produced carbapenemase OXA-23. The vast majority (91.8%) of OXA-23 producers harbored the armA and were assigned mainly (94.3%) to sequence group G1, corresponding to IC II. Apramycin (EBL-1003) was the most active agent inhibiting 100% of the isolates at ≤16 mg/L, followed by cefiderocol which was active against at least 86% of them. Minocycline, colistin and ampicillin-sulbactam exhibited only sparse activity (S <19%), while eravacycline was 8- and 2-fold more active than minocycline and tigecycline respectively, by comparison of their MIC50/90 values. OXA-23-ArmA producing A. baumannii of international clone II appears to be the prevailing epidemiological type of this organism in Greece. Cefiderocol could provide a useful alternative for difficult to treat Gram-negative infections, while apramycin (EBL-1003), the structurally unique aminoglycoside currently in clinical development, may represent a highly promising agent against multi-drug resistant A. baumanni infections, due to its high susceptibility rates and low toxicity.


Assuntos
Acinetobacter baumannii , Sepse , Humanos , Antibacterianos/farmacologia , Minociclina , Grécia/epidemiologia , RNA Ribossômico 16S , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla , Cefiderocol
8.
Front Microbiol ; 14: 1107566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007495

RESUMO

Pathogenic Escherichia coli strains are important causes of several swine diseases that result in significant economic losses worldwide. In Japan, the use of antimicrobials in swine is much higher than that in other farm animals every year. Antimicrobial resistance in pathogenic E. coli strains also heavily impacts the swine industry due to the limited treatment options and an increase in the potential risk of the One Health crisis. In 2016, we investigated 684 Japanese isolates of swine pathogenic E. coli belonging to four major serogroups and reported the emergence and increase in the highly multidrug-resistant serogroups O116 and OSB9 and the appearance of colistin-resistant strains. In the present study, by expanding our previous analysis, we determined the serotypes and antimicrobial resistance of 1,708 E. coli strains isolated from diseased swine between 1991 and 2019 in Japan and found recent increases in the prevalences of multidrug-resistant strains and minor serogroup strains. Among the antimicrobials examined in this study that have been approved for animal use, a third-generation cephalosporin was found to be effective against the most isolates (resistance rate: 1.2%) but not against highly multidrug-resistant strains. We also analyzed the susceptibilities of the 1,708 isolates to apramycin and bicozamycin, both which are available for treating swine in Japan, and found that the rates of resistance to apramycin and bicozamycin were low (6.7% and 5.8%, respectively), and both antimicrobials are more effective (resistance rates: 2.7% and 5.4%, respectively) than third-generation cephalosporins (resistance rate: 16.2%) against highly multidrug-resistant strains.

9.
Int J Antimicrob Agents ; 60(4): 106659, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988665

RESUMO

INTRODUCTION: Bloodstream infections (BSIs) are a leading cause of sepsis, which is a life-threatening condition that significantly contributes to the mortality of bacterial infections. Aminoglycoside antibiotics such as gentamicin or amikacin are essential medicines in the treatment of BSIs, but their clinical efficacy is increasingly being compromised by antimicrobial resistance. The aminoglycoside apramycin has demonstrated preclinical efficacy against aminoglycoside-resistant and multidrug-resistant (MDR) Gram-negative bacilli (GNB) and is currently in clinical development for the treatment of critical systemic infections. METHODS: This study collected a panel of 470 MDR GNB isolates from healthcare facilities in Cambodia, Laos, Singapore, Thailand and Vietnam for a multicentre assessment of their antimicrobial susceptibility to apramycin in comparison with other aminoglycosides and colistin by broth microdilution assays. RESULTS: Apramycin and amikacin MICs ≤ 16 µg/mL were found for 462 (98.3%) and 408 (86.8%) GNB isolates, respectively. Susceptibility to gentamicin and tobramycin (MIC ≤ 4 µg/mL) was significantly lower at 122 (26.0%) and 101 (21.5%) susceptible isolates, respectively. Of note, all carbapenem and third-generation cephalosporin-resistant Enterobacterales, all Acinetobacter baumannii and all Pseudomonas aeruginosa isolates tested in this study appeared to be susceptible to apramycin. Of the 65 colistin-resistant isolates tested, four (6.2%) had an apramycin MIC > 16 µg/mL. CONCLUSION: Apramycin demonstrated best-in-class activity against a panel of GNB isolates with resistances to other aminoglycosides, carbapenems, third-generation cephalosporins and colistin, warranting continued consideration of apramycin as a drug candidate for the treatment of MDR BSIs.


Assuntos
Amicacina , Colistina , Aminoglicosídeos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sudeste Asiático , Hemocultura , Carbapenêmicos , Cefalosporinas , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Gentamicinas , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Nebramicina/análogos & derivados , Pseudomonas aeruginosa , Tobramicina
10.
Clin Microbiol Infect ; 28(10): 1367-1374, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35598857

RESUMO

OBJECTIVES: New drugs and methods to efficiently fight carbapenem-resistant gram-negative pathogens are sorely needed. In this study, we characterized the preclinical pharmacokinetics (PK) and pharmacodynamics of the clinical stage drug candidate apramycin in time kill and mouse lung infection models. Based on in vitro and in vivo data, we developed a mathematical model to predict human efficacy. METHODS: Three pneumonia-inducing gram-negative species Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae were studied. Bactericidal kinetics were evaluated with time-kill curves; in vivo PK were studied in healthy and infected mice, with sampling in plasma and epithelial lining fluid after subcutaneous administration; in vivo efficacy was measured in a neutropenic mouse pneumonia model. A pharmacokinetic-pharmacodynamic model, integrating all the data, was developed and simulations were performed. RESULTS: Good lung penetration of apramycin in epithelial lining fluid (ELF) was shown (area under the curve (AUC)ELF/AUCplasma = 88%). Plasma clearance was 48% lower in lung infected mice compared to healthy mice. For two out of five strains studied, a delay in growth (∼5 h) was observed in vivo but not in vitro. The mathematical model enabled integration of lung PK to drive mouse PK and pharmacodynamics. Simulations predicted that 30 mg/kg of apramycin once daily would result in bacteriostasis in patients. DISCUSSION: Apramycin is a candidate for treatment of carbapenem-resistant gram-negative pneumonia as demonstrated in an integrated modeling framework for three bacterial species. We show that mathematical modelling is a useful tool for simultaneous inclusion of multiple data sources, notably plasma and lung in vivo PK and simulation of expected scenarios in a clinical setting, notably lung infections.


Assuntos
Pneumonia Bacteriana , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/uso terapêutico , Humanos , Pulmão/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Nebramicina/análogos & derivados , Pneumonia Bacteriana/tratamento farmacológico
11.
J Ind Microbiol Biotechnol ; 49(4)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35536571

RESUMO

A structurally unique aminoglycoside produced in Streptoalloteichus tenebrarius, Apramycin is used in veterinary medicine or the treatment of Salmonella, Escherichia coli, and Pasteurella multocida infections. Although apramycin was discovered nearly 50 years ago, many biosynthetic steps of apramycin remain unknown. In this study, we identified a HemK family methyltransferase, AprI, to be the 7'-N-methyltransferase in apramycin biosynthetic pathway. Biochemical experiments showed that AprI converted demethyl-aprosamine to aprosamine. Through gene disruption of aprI, we identified a new aminoglycoside antibiotic demethyl-apramycin as the main product in aprI disruption strain. The demethyl-apramycin is an impurity in apramycin product. In addition to demethyl-apramycin, carbamyltobramycin is another major impurity. However, unlike demethyl-apramycin, tobramycin is biosynthesized by an independent biosynthetic pathway in S. tenebrarius. The titer and rate of apramycin were improved by overexpression of the aprI and disruption of the tobM2, which is a crucial gene for tobramycin biosynthesis. The titer of apramycin increased from 2227 ± 320 mg/L to 2331 ± 210 mg/L, while the titer of product impurity demethyl-apramycin decreased from 196 ± 36 mg/L to 51 ± 9 mg/L. Moreover, the carbamyltobramycin titer of the wild-type strain was 607 ± 111 mg/L and that of the engineering strain was null. The rate of apramycin increased from 68% to 87% and that of demethyl-apramycin decreased from 1.17% to 0.34%.


Assuntos
Actinomycetales , Streptomyces , Actinobacteria , Aminoglicosídeos , Antibacterianos , Escherichia coli/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Nebramicina/análogos & derivados , Streptomyces/genética , Tobramicina/metabolismo
12.
Mol Pharm ; 19(7): 2406-2417, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35507414

RESUMO

The formation of biofilms by a microcolony of bacteria is a significant burden on the healthcare industry due to difficulty eradicating it. In this study, pH-responsive vesicles capable of releasing apramycin (APR), a model aminoglycoside antibiotic, in response to the low pH typical of establishedPseudomonas aeruginosa biofilms resulted in improved eradication of existing biofilms in comparison to the free drug. The amphiphilic polymeric vesicle (PV) comprised of block polymer poly (ethylene glycol)-block-poly 2-(dimethylamino) ethyl methacrylate (mPEG-b-pDEAEMA) averaged 128 nm. The drug encapsulation content of APR in PV/APR was confirmed to be 28.2%, and the drug encapsulation efficiency was confirmed to be 51.2%. At pH 5.5, PV/APR released >90% APR after 24 h compared to <20% at pH 7.4. At pH 5.5, protonation of the pDEAEMA block results in a zeta potential of +23 mV compared to a neutral zeta potential of +2.2 mV at pH 7.4. Confocal microscopy, flow cytometry, and scanning electron microscopy reveal that the positively charged vesicles can compromise the integrity of the planktonic bacterial membrane in a pH-dependent manner. In addition, PV/APR is able to diffuse into mature biofilms to release APR in the acidic milieu of biofilm bacteria, and PV/APR was more efficient at eliminating preexisting biofilms compared to free APR at 128 and 256 µg/mL. This study reveals that dynamic charge density in response to pH can lead to differential levels of interactions with the biofilm and bacterial membrane. This effectively results in enhanced antibacterial and antibiofilm properties against both planktonic and difficult-to-treat biofilm bacteria at concentrations significantly lower than those of the free drug. Overall, this pH-responsive vesicle could be especially promising for treating biofilm-associated infectious diseases.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Antibacterianos/química , Antibacterianos/farmacologia , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Polímeros/química
13.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163350

RESUMO

The purpose of this study was to establish the clinical breakpoint (CBP) of apramycin (APR) against Salmonella in swine and evaluate its effect on intestinal microbiota. The CBP was established based on three cutoff values of wild-type cutoff value (COWT), pharmacokinetic-pharmadynamic (PK/PD) cutoff value (COPD) and clinical cutoff value (COCL). The effect of the optimized dose regimen based on ex vivo PK/PD study. The evolution of the ileum flora was determined by the 16rRNA gene sequencing and bioinformatics. This study firstly established the COWT, COPD in ileum, and COCL of APR against swine Salmonella, the value of these cutoffs were 32 µg/mL, 32 µg/mL and 8 µg/mL, respectively. According to the guiding principle of the Clinical Laboratory Standards Institute (CLSI), the final CBP in ileum was 32 µg/mL. Our results revealed the main evolution route in the composition of ileum microbiota of diarrheic piglets treated by APR. The change of the abundances of Bacteroidetes and Euryarchaeota was the most obvious during the evolution process. Methanobrevibacter, Prevotella, S24-7 and Ruminococcaceae were obtained as the highest abundance genus. The abundance of Methanobrevibacter increased significantly when APR treatment carried and decreased in cure and withdrawal period groups. The abundance of Prevotella in the tested groups was significantly lower than that in the healthy group. A decreased of abundance in S24-7 was observed after Salmonella infection and increased slightly after cure. Ruminococcaceae increased significantly after Salmonella infection and decreased significantly after APR treatment. In addition, the genera of Methanobrevibacter and Prevotella were defined as the key node. Valine, leucine and isoleucine biosynthesis, D-Glutamine and D-glutamate metabolism, D-Alanine metabolism, Peptidoglycan and amino acids biosynthesis were the top five Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the ileum microbiota of piglets during the Salmonella infection and APR treatment process. Our study extended the understanding of dynamic shift of gut microbes during diarrheic piglets treated by APR.


Assuntos
Microbioma Gastrointestinal , Nebramicina , Animais , Íleo , Nebramicina/análogos & derivados , Nebramicina/farmacologia , Prevotella , Salmonella , Suínos
14.
Antimicrob Agents Chemother ; 66(2): e0151021, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34930031

RESUMO

Antibiotic therapy of infections caused by the emerging pathogen Mycobacterium abscessus is challenging due to the organism's inherent resistance to clinically available antimicrobials. The low bactericidal potency of currently available treatment regimens is of concern and testifies to the poor therapeutic outcomes for pulmonary M. abscessus infections. Mechanistically, we demonstrate here that the acetyltransferase Eis2 is responsible for the lack of bactericidal activity of amikacin, the standard aminoglycoside used in combination treatment. In contrast, the aminoglycoside apramycin, with a distinct structure, is not modified by any of the pathogen's innate aminoglycoside resistance mechanisms and is not affected by the multidrug resistance regulator WhiB7. As a consequence, apramycin uniquely shows potent bactericidal activity against M. abscessus. This favorable feature of apramycin is reflected in a mouse model of pulmonary M. abscessus infection, which demonstrates superior activity, compared with amikacin. These findings encourage the development of apramycin for the treatment of M. abscessus infections and suggest that M. abscessus eradication in pulmonary disease may be within therapeutic reach.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Nebramicina , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Nebramicina/análogos & derivados , Nebramicina/farmacologia , Nebramicina/uso terapêutico
15.
Expert Rev Anti Infect Ther ; 20(1): 53-69, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34033499

RESUMO

INTRODUCTION: The emergence of carbapenemase resistant Gram-negative is designated as an 'urgent' priority of public health. Carbapenemase producing Klebsiella pneumoniae (CPKP) is linked with significant mortality. Conventionally used antibiotics (polymyxins, tigecycline, aminoglycosides, etc.) are associated with poor efficacy and toxicity profiles are quite worrisome. AREAS COVERED: This article reviews mechanism of resistance and evidence regarding novel treatments of infections caused by CPKP, focusing mainly on currently approved new therapies and implications on future therapeutic strategies. A review of novel ß-lactam/ß-lactamase inhibitors (BLI) recently approved and in clinical development as well as cefiderocol, eravacycline and apramycin are discussed. EXPERT OPINION: Newly approved and forthcoming antimicrobial agents are promising to combat infections caused by CPKP. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-cilastatin-relebactam are novel agents with favorable outcome and associated with improved mortality in KPC-producing K. pneumoniae infections. However, are inactive against metallo-ß-lactamases (MBL). Novel BLI in later stage of development, i.e. aztreonam-avibactam, cefepime-zidebactam, cefepime-taniborbactam, and meropenem-nacubactam as well as cefiderocol are active in vitro against both KPC and MBL. Potential expectations of future therapeutic strategies are improved potency against CPKP, more tolerable safety profile, and capability of overcoming current resistance mechanism of multidrug-resistant K. pneumoniae.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Klebsiella pneumoniae , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias , Ceftazidima/farmacologia , Combinação de Medicamentos , Humanos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases
16.
EFSA J ; 19(10): e06853, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729082

RESUMO

The specific concentrations of apramycin, paromomycin, neomycin and spectinomycin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield, were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC for these antimicrobials, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for apramycin and neomycin, whilst for paromomycin and spectinomycin, no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these four antimicrobials.

17.
Front Microbiol ; 12: 759170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721368

RESUMO

Antibiotic resistance is an increasing concern for human and animal health worldwide. Recently, the concept of reverting bacterial resistance by changing the metabolic state of antibiotic-resistant bacteria has emerged. In this study, we investigated the reversal of Apramycin resistance in Salmonella. First, non-targeted metabonomics were used to identify key differential metabolites of drug-resistant bacteria. Then, the reversal effect of exogenous substances was verified in vivo and in vitro. Finally, the underlying mechanism was studied. The results showed that the metabolites citrulline and glutamine were significantly reduced in Apramycin-resistant Salmonella. When citrulline and glutamine were added to the culture medium of drug-resistant Salmonella, the killing effect of Apramycin was restored markedly. Mechanistic studies showed that citrulline and glutamine promoted the Tricarboxylic acid cycle, produced more NADH in the bacteria, and increased the proton-motive force, thus promoting Apramycin entry into the bacterial cells, and killing the drug-resistant bacteria. This study provides a useful method to manage infections by antibiotic-resistant bacteria.

18.
Ann Clin Microbiol Antimicrob ; 20(1): 64, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493302

RESUMO

BACKGROUND: Bacterial superinfections associated with COVID-19 are common in ventilated ICU patients and impact morbidity and lethality. However, the contribution of antimicrobial resistance to the manifestation of bacterial infections in these patients has yet to be elucidated. METHODS: We collected 70 Gram-negative bacterial strains, isolated from the lower respiratory tract of ventilated COVID-19 patients in Zurich, Switzerland between March and May 2020. Species identification was performed using MALDI-TOF; antibiotic susceptibility profiles were determined by EUCAST disk diffusion and CLSI broth microdilution assays. Selected Pseudomonas aeruginosa isolates were analyzed by whole-genome sequencing. RESULTS: Pseudomonas aeruginosa (46%) and Enterobacterales (36%) comprised the two largest etiologic groups. Drug resistance in P. aeruginosa isolates was high for piperacillin/tazobactam (65.6%), cefepime (56.3%), ceftazidime (46.9%) and meropenem (50.0%). Enterobacterales isolates showed slightly lower levels of resistance to piperacillin/tazobactam (32%), ceftriaxone (32%), and ceftazidime (36%). All P. aeruginosa isolates and 96% of Enterobacterales isolates were susceptible to aminoglycosides, with apramycin found to provide best-in-class coverage. Genotypic analysis of consecutive P. aeruginosa isolates in one patient revealed a frameshift mutation in the transcriptional regulator nalC that coincided with a phenotypic shift in susceptibility to ß-lactams and quinolones. CONCLUSIONS: Considerable levels of antimicrobial resistance may have contributed to the manifestation of bacterial superinfections in ventilated COVID-19 patients, and may in some cases mandate consecutive adaptation of antibiotic therapy. High susceptibility to amikacin and apramycin suggests that aminoglycosides may remain an effective second-line treatment of ventilator-associated bacterial pneumonia, provided efficacious drug exposure in lungs can be achieved.


Assuntos
Antibacterianos/farmacologia , COVID-19/microbiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Sistema Respiratório/microbiologia , COVID-19/complicações , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Pneumonia Associada à Ventilação Mecânica/microbiologia , Estudos Prospectivos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Suíça
19.
Molecules ; 26(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299618

RESUMO

Tobramycin is a broad-spectrum aminoglycoside antibiotic agent. The compound is obtained from the base-catalyzed hydrolysis of carbamoyltobramycin (CTB), which is naturally produced by the actinomycete Streptoalloteichus tenebrarius. However, the strain uses the same precursors to synthesize several structurally related aminoglycosides. Consequently, the production yields of tobramycin are low, and the compound's purification is very challenging, costly, and time-consuming. In this study, the production of the main undesired product, apramycin, in the industrial isolate Streptoalloteichus tenebrarius 2444 was decreased by applying the fermentation media M10 and M11, which contained high concentrations of starch and dextrin. Furthermore, the strain was genetically engineered by the inactivation of the aprK gene (∆aprK), resulting in the abolishment of apramycin biosynthesis. In the next step of strain development, an additional copy of the tobramycin biosynthetic gene cluster (BGC) was introduced into the ∆aprK mutant. Fermentation by the engineered strain (∆aprK_1-17L) in M11 medium resulted in a 3- to 4-fold higher production than fermentation by the precursor strain (∆aprK). The phenotypic stability of the mutant without selection pressure was validated. The use of the engineered S. tenebrarius 2444 facilitates a step-saving, efficient, and, thus, more sustainable production of the valuable compound tobramycin on an industrial scale.


Assuntos
Actinobacteria/genética , Antibacterianos/biossíntese , Tobramicina/biossíntese , Aminoglicosídeos/biossíntese , Fermentação/genética , Engenharia Genética/métodos , Família Multigênica/genética , Nebramicina/análogos & derivados , Nebramicina/biossíntese
20.
Microb Drug Resist ; 27(11): 1555-1559, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33956523

RESUMO

Apramycin and florfenicol are two antimicrobial agents exclusively used in veterinary medicine. Resistance determinants to these antimicrobial agents have been described in several staphylococci, yet no inhibition zone-based epidemiological cutoff (ECOFF) values are available to detect populations harboring resistance mechanisms. In this study, we propose disk diffusion inhibition zone ECOFF values of Staphylococcus aureus for apramycin and florfenicol. The susceptibility to apramycin and florfenicol was evaluated by disk diffusion of five S. aureus collections, comprising 352 isolates of animal (n = 265) and human (n = 87) origin. The aggregated distributions of inhibition zone diameters were analyzed by the normalized resistance interpretation method to obtain normalized wild-type (WT) population distributions and corresponding ECOFF values. The putative WT populations of S. aureus were characterized by an inhibition zone ≥15 mm (ECOFF = 15 mm) for apramycin and ≥21 mm for florfenicol (ECOFF = 21 mm). Five nonwild-type (NWT) isolates were detected for apramycin, all without inhibition zone and harboring the apmA gene, whereas five NWT isolates were identified for florfenicol, all carrying the fexA gene. The proposed ECOFF values for apramycin and florfenicol may be a valuable tool in future antimicrobial resistance monitoring and surveillance studies to identify S. aureus NWT populations toward these antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana/normas , Nebramicina/análogos & derivados , Staphylococcus aureus/efeitos dos fármacos , Tianfenicol/análogos & derivados , Farmacorresistência Bacteriana , Nebramicina/farmacologia , Tianfenicol/farmacologia , Medicina Veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA