Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Acta Biomater ; 180: 206-229, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38641184

RESUMO

This study presents a 3D in vitro cell culture model, meticulously 3D printed to replicate the conventional aqueous outflow pathway anatomical structure, facilitating the study of trabecular meshwork (TM) cellular responses under glaucomatous conditions. Glaucoma affects TM cell functionality, leading to extracellular matrix (ECM) stiffening, enhanced cell-ECM adhesion, and obstructed aqueous humor outflow. Our model, reconstructed from polyacrylamide gel with elastic moduli of 1.5 and 21.7 kPa, is based on serial block-face scanning electron microscopy images of the outflow pathway. It allows for quantifying 3D, depth-dependent, dynamic traction forces exerted by both normal and glaucomatous TM cells within an active fluid-structure interaction (FSI) environment. In our experimental design, we designed two scenarios: a control group with TM cells observed over 20 hours without flow (static setting), focusing on intrinsic cellular contractile forces, and a second scenario incorporating active FSI to evaluate its impact on traction forces (dynamic setting). Our observations revealed that active FSI results in higher traction forces (normal: 1.83-fold and glaucoma: 2.24-fold) and shear strains (normal: 1.81-fold and glaucoma: 2.41-fold), with stiffer substrates amplifying this effect. Glaucomatous cells consistently exhibited larger forces than normal cells. Increasing gel stiffness led to enhanced stress fiber formation in TM cells, particularly in glaucomatous cells. Exposure to active FSI dramatically altered actin organization in both normal and glaucomatous TM cells, particularly affecting cortical actin stress fiber arrangement. This model while preliminary offers a new method in understanding TM cell biomechanics and ECM stiffening in glaucoma, highlighting the importance of FSI in these processes. STATEMENT OF SIGNIFICANCE: This pioneering project presents an advanced 3D in vitro model, meticulously replicating the human trabecular meshwork's anatomy for glaucoma research. It enables precise quantification of cellular forces in a dynamic fluid-structure interaction, a leap forward from existing 2D models. This advancement promises significant insights into trabecular meshwork cell biomechanics and the stiffening of the extracellular matrix in glaucoma, offering potential pathways for innovative treatments. This research is positioned at the forefront of ocular disease study, with implications that extend to broader biomedical applications.


Assuntos
Glaucoma , Malha Trabecular , Malha Trabecular/patologia , Humanos , Glaucoma/patologia , Glaucoma/fisiopatologia , Matriz Extracelular/metabolismo , Técnicas de Cultura de Células em Três Dimensões , Células Cultivadas , Fenômenos Biomecânicos
2.
Bioengineering (Basel) ; 11(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38391628

RESUMO

Distal outflow bleb-forming procedures in ophthalmic surgery expose subconjunctival tissue to inflammatory cytokines present in the aqueous humor, resulting in impaired outflow and, consequently, increased intraocular pressure. Clinically, this manifests as an increased risk of surgical failure often necessitating revision. This study (1) introduces a novel high-throughput screening platform for testing potential anti-fibrotic compounds and (2) assesses the clinical viability of modulating the transforming growth factor beta-SMAD2/3 pathway as a key contributor to post-operative outflow reduction, using the signal transduction inhibitor verteporfin. Human Tenon's capsule fibroblasts (HTCFs) were cultured within a 3D collagen matrix in a microfluidic system modelling aqueous humor drainage. The perfusate was augmented with transforming growth factor beta 1 (TGFß1), and afferent pressure to the tissue-mimetic was continuously monitored to detect treatment-related pressure elevations. Co-treatment with verteporfin was employed to evaluate its capacity to counteract TGFß1 induced pressure changes. Immunofluorescent studies were conducted on the tissue-mimetic to corroborate the pressure data with cellular changes. Introduction of TGFß1 induced treatment-related afferent pressure increase in the tissue-mimetic. HTCFs treated with TGFß1 displayed visibly enlarged cytoskeletons and stress fiber formation, consistent with myofibroblast transformation. Importantly, verteporfin effectively mitigated these changes, reducing both afferent pressure increases and cytoskeletal alterations. In summary, this study models the pathological filtration bleb response to TGFß1, while demonstrating verteporfin's effectiveness in ameliorating both functional and cellular changes caused by TGFß1. These demonstrate modulation of the aforementioned pathway as a potential avenue for addressing post-operative changes and reductions in filtration bleb outflow capacity. Furthermore, the establishment of a high-throughput screening platform offers a valuable pre-animal testing tool for investigating potential compounds to facilitate surgical wound healing.

3.
J Clin Med ; 12(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37892736

RESUMO

Herein, we provide evidence that human regulation of aqueous outflow is by a pump-conduit system similar to that of the lymphatics. Direct observation documents pulsatile aqueous flow into Schlemm's canal and from the canal into collector channels, intrascleral channels, aqueous veins, and episcleral veins. Pulsatile flow in vessels requires a driving force, a chamber with mobile walls and valves. We demonstrate that the trabecular meshwork acts as a deformable, mobile wall of a chamber: Schlemm's canal. A tight linkage between the driving force of intraocular pressure and meshwork deformation causes tissue responses in milliseconds. The link provides a sensory-motor baroreceptor-like function, providing maintenance of a homeostatic setpoint. The ocular pulse causes meshwork motion oscillations around the setpoint. We document valves entering and exiting the canal using real-time direct observation with a microscope and multiple additional modalities. Our laboratory-based high-resolution SD-OCT platform quantifies valve lumen opening and closing within milliseconds synchronously with meshwork motion; meshwork tissue stiffens, and movement slows in glaucoma tissue. Our novel PhS-OCT system measures nanometer-level motion synchronous with the ocular pulse in human subjects. Movement decreases in glaucoma patients. Our model is robust because it anchors laboratory studies to direct observation of physical reality in humans with glaucoma.

4.
Clin Ophthalmol ; 17: 1557-1564, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288002

RESUMO

Minimally invasive glaucoma surgery (MIGS) has revolutionized glaucoma care with its favorable safety profile and ability to delay or minimize the need for traditional, bleb-based procedures. Microstent device implantation is a type of angle-based MIGS, which reduces intraocular pressure (IOP) through bypass of the juxtacanalicular trabecular meshwork (TM) and facilitation of aqueous outflow into the Schlemm's canal. Although there are limited microstent devices on the market, multiple studies have evaluated the safety and efficacy of iStent® (Glaukos Corp.), iStent Inject® (Glaukos Corp.), and Hydrus® Microstent (Alcon) in the treatment of mild-to-moderate open-angle glaucoma, with and without concurrent phacoemulsification. This review attempts to provide a comprehensive evaluation of injectable angle-based microstent MIGS devices in the treatment of glaucoma.

5.
Cells ; 11(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36497183

RESUMO

A layer of proteoglycans and glycoproteins known as glycocalyx covers the surface of the trabecular meshwork (TM), juxtacanalicular tissue (JCT), and Schlemm's canal (SC) inner wall of the conventional aqueous outflow pathway in the eye. This has been shown to play a role in the mechanotransduction of fluid shear stress and in the regulation of the outflow resistance. The outflow resistance in the conventional outflow pathway is the main determinant of the intraocular pressure (IOP) through an active, two-way, fluid-structure interaction coupling between the outflow tissues and aqueous humor. A 3D microstructural finite element (FE) model of a healthy human eye TM/JCT/SC complex with interspersed aqueous humor was constructed. A very thin charged double layer that represents the endothelial glycocalyx layer covered the surface of the elastic outflow tissues. The aqueous humor was modeled as electroosmotic flow that is charged when it is in contact with the outflow tissues. The electrical-fluid-structure interaction (EFSI) method was used to couple the charged double layer (glycocalyx), fluid (aqueous humor), and solid (outflow tissues). When the IOP was elevated to 15 mmHg, the maximum aqueous humor velocity in the EFSI model was decreased by 2.35 mm/s (9%) compared to the fluid-structure interaction (FSI) model. The charge or electricity in the living human conventional outflow pathway generated by the charged endothelial glycocalyx layer plays a minor biomechanical role in the resultant stresses and strains as well as the hydrodynamics of the aqueous humor.


Assuntos
Oftalmopatias , Mecanotransdução Celular , Humanos , Malha Trabecular/metabolismo , Humor Aquoso/metabolismo , Pressão Intraocular , Glicocálix , Oftalmopatias/metabolismo
6.
Front Cell Dev Biol ; 10: 868029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859902

RESUMO

Purpose: The aim of the study was 1) to describe a novel combination of techniques that permit immunohistochemistry imaging of Schlemm's canal inlet (SIV) and outlet (SOV) valve-like structures, 2) to identify tissue-level SIV adhesive relationships linking the trabecular meshwork (TM) to hinged collagen leaflets at the Schlemm's canal (SC) external wall, and 3) to determine whether the SIV lumen wall's adhesive vascular markers are similar to those of the SC inner wall endothelium. Materials and Methods: Anterior segments of 16 M. nemestrina primates underwent immunohistochemistry (IHC) labeling. We perfused fluorescent microspheres into 12 of the eyes. Limbal tissues were divided into quadrants, viscoelastic introduced into SC, tissues fixed, immunohistochemistry performed, radial segments cut, tissues clarified, and confocal microscopy performed. Finally, we generated ImageJ 3D projections encompassing the TM, SC, and distal pathways. Results: IHC imaging identified 3D relationships between SIV, collector channel ostia, collector channels (CC), SOV, and intrascleral channels. Imaging depth increased 176.9%, following clarification (p < 0.0001). Imaging demonstrated CD31, collagen type 1 and 4 in the walls of the SIV lumen and more distal pathways. In eight eyes, 384 segments were examined, 447 SIV identified, and 15.4% contained microspheres. Conclusion: Our technique's imaging depth permitted the identification of SIV linkage between the TM and SOV. We found comparable cell-cell adhesion molecules (CD31) and basement membrane components in the SC inner wall and SIV lumen walls. Recent OCT studies have suggested that SIV tensional relationships may control CC entrance dimensions that regulate distal resistance. Cellular adhesive properties sustain SIV tensional relationships. These SIV cell-cell and cell-basement membrane properties warrant further study because abnormalities could be a factor in the IOP elevation of glaucoma.

7.
Front Med (Lausanne) ; 9: 815866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572956

RESUMO

Purpose: This study aimed to investigate anatomic relationships and biomechanics of pressure-dependent trabecular meshwork and distal valve-like structure deformation in normal and glaucoma eyes using high-resolution optical coherence tomography (HR-OCT). Methods: We controlled Schlemm's canal (SC) pressure during imaging with HR-OCT in segments of three normal (NL) and five glaucomatous (GL) ex vivo eyes. The dissected limbal wedges were studied from 15 locations (5 NL and 10 GL). A minimally invasive glaucoma surgery (MIGS)-like cannula was inserted into the SC lumen, whereas the other end was attached to a switch between two reservoirs, one at 0, the other at 30 mm Hg. A steady-state pressure of 30 mm Hg was maintained to dilate SC and collector channels (CC) during 3D volume imaging. The resulting 3D lumen surface relationships were correlated with internal structural features using an image mask that excluded tissues surrounding SC and CC. While imaging with HR-OCT, real-time motion responses in SC and CC areas were captured by switching pressure from 0 to 30 or 30 to 0 mm Hg. NL vs. GL motion differences were compared. Results: Lumen surface and internal relationships were successfully imaged. We identified SC inlet and outlet valve-like structures. In NL and GL, the mean SC areas measured at the steady-state of 0 and 30 mm Hg were each significantly different (p < 0.0001). Synchronous changes in SC and CC lumen areas occurred in <200 ms. Measured SC area differences at the steady-state 0 and 30 mmHg, respectively, were larger in NL than GL eyes (p < 0.0001). The SC motion curves rose significantly more slowly in GL than NL (p < 0.001). Pressure waves traveled from the cannula end along the SC lumen to CC and deep intrascleral channels. Conclusion: HR-OCT provided simultaneous measurements of outflow pathway lumen surfaces, internal structures, and biomechanics of real-time pressure-dependent dimension changes. We identified SC inlet and outlet valve-like structures. GL tissues underwent less motion and responded more slowly than NL, consistent with increased tissue stiffness. A MIGS-like shunt to SC permitted pulse waves to travel distally along SC lumen and into CC.

8.
Exp Eye Res ; 219: 109030, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35283108

RESUMO

Though roughly 30-50% of aqueous outflow resistance resides distal to Schlemm's canal (SC), the morphology of the conventional outflow pathway distal to SC has not been thoroughly evaluated. This study examined the morphological changes along proximal and distal aspects of the conventional aqueous outflow pathway and their association with decreased outflow facility in an experimental model of glaucoma in cynomolgus macaques. Nd:YAG laser burns were made to 270-340 degrees of the trabecular meshwork (TM) of one eye (n = 6) or both eyes (n = 2) of each monkey to induce ocular hypertension. Distinct regions of the TM were left unlasered. Contralateral eyes (n = 5) were not lasered and were utilized as controls. Monkeys were sacrificed ≥58 months after their last laser treatment. All eyes were enucleated and perfused at 15 mmHg for 30 min to measure outflow facility. Two pairs of eyes were also perfused with fluorescein to examine segmental outflow. All eyes underwent perfusion-fixation for 1 h. Anterior segments were cut into radial wedges and processed for light and electron microscopy. Width, height, and cross-sectional area (CSA) of SC were compared between high- and low-flow regions of control eyes, and between non-lasered regions of laser-treated eyes and control eyes. Number and CSA of intrascleral veins (ISVs) were compared between non-lasered and lasered regions of laser-treated eyes and control eyes, and between high- and low-flow regions of control eyes. Scleral collagen fibril diameter was compared between control eyes and lasered and non-lasered regions of laser-treated eyes. Median outflow facility was significantly decreased in laser-treated eyes compared to control eyes (P = 0.02). Median CSA and height of SC were smaller in high-flow regions than low-flow regions of control eyes (P < 0.05). Median width of SC was not significantly different between high- and low-flow regions of control eyes (P > 0.05). Median CSA, width, and height of SC were not different between non-lasered regions and control eyes (P > 0.05). SC was partially or completely obliterated in lasered regions. Median number of ISVs was significantly decreased in lasered regions compared to non-lasered regions (P < 0.01) and control eyes (P < 0.01). Median CSA of ISVs did not differ between these groups (P > 0.05). Median number and CSA of ISVs were not significantly different between high- and low-flow regions of control eyes (P > 0.05). Lasered regions displayed looser scleral stroma and smaller median diameter of collagen fibrils adjacent to the TM compared to non-lasered regions (P < 0.05) and control eyes (P < 0.05). Dense TM, partial to complete obliteration of SC, and a decreased number of patent ISVs may account in part for the decreased outflow facility in monkey eyes with laser-induced ocular hypertension. The significance of changes in scleral structure in laser-treated eyes warrants further investigation.


Assuntos
Humor Aquoso , Glaucoma , Animais , Humor Aquoso/metabolismo , Colágeno/metabolismo , Glaucoma/etiologia , Glaucoma/metabolismo , Pressão Intraocular , Lasers , Macaca fascicularis , Malha Trabecular/metabolismo
9.
Vet Ophthalmol ; 25 Suppl 1: 84-95, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34581493

RESUMO

PURPOSE: Angle closure glaucoma (PACG) is highly prevalent in dogs and is often refractory to medical therapy. We hypothesized that pathology affecting the post-trabecular conventional aqueous outflow pathway contributes to persistent intraocular pressure (IOP) elevation in dogs with PACG. The goal of this study was to determine the potential for aqueous angiography (AA) and optical coherence tomography (OCT) to identify abnormalities in post-trabecular aqueous outflow pathways in canine PACG. METHODS: AA and anterior segment OCT (Spectralis HRA + OCT) were performed ex vivo in 19 enucleated canine eyes (10 normal eyes and 9 irreversibly blind eyes from canine patients enucleated for management of refractory PACG). Eyes were cannulated and maintained at physiologic IOP (10-20 mmHg) prior to intracameral infusion of fluorescent tracer. OCT scleral line scans were acquired in regions of high and low perilimbal AA signal. Eyes were then perfusion fixed and cryosections prepared from 10/10 normal and 7/9 PACG eyes and immunolabeled for a vascular endothelial marker. RESULTS: Normal canine eyes showed segmental, circumferential limbal AA signal, whereas PACG eyes showed minimal or no AA signal. AA signal correlated with scleral lumens on OCT in normal dogs, but lumens were generally absent or flattened in PACG eyes. Collapsed vascular profiles were identified in tissue sections from PACG eyes, including those in which no lumens were identified on AA and OCT. CONCLUSIONS: In canine eyes with PACG, distal aqueous outflow channels are not identifiable by AA, despite normalization of their IOP, and intra-scleral vascular profiles are collapsed on OCT and histopathology.


Assuntos
Doenças do Cão , Glaucoma de Ângulo Fechado , Animais , Doenças do Cão/diagnóstico por imagem , Cães , Glaucoma de Ângulo Fechado/patologia , Glaucoma de Ângulo Fechado/veterinária , Pressão Intraocular , Tomografia de Coerência Óptica/métodos , Tomografia de Coerência Óptica/veterinária , Tonometria Ocular
10.
J Curr Glaucoma Pract ; 16(3): 144-151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36793268

RESUMO

Aim: Understanding the mechanism of fluid outflow by comparing the subconjunctival and subtenon spaces can lead to improved ocular therapeutics. The purpose of the current study is to evaluate subconjunctival vs subtenon lymphatic outflow by creating tracer-filled blebs in each location. Methods: Porcine (n = 20) eyes received subconjunctival or subtenon injection(s) of fixable and fluorescent dextrans. Blebs were angiographically imaged using a Heidelberg Spectralis ([Heidelberg Retina Angiograph] HRA + OCT; Heidelberg Engineering) and bleb-related lymphatic outflow pathways were counted. Optical coherence tomography (OCT) imaging of these pathways was used to assess structural lumens and the presence of valve-like structures. Furthermore, a comparison between tracer injection locations (superior/inferior/temporal/nasal) was made. Histologic analyses for subconjunctival and subtenon outflow pathways were performed, to confirm tracer co-localization with molecular lymphatic markers. Results: Subconjunctival blebs demonstrated a greater number of lymphatic outflow pathways compared to subtenon blebs in every quadrant [superior: 6.10 ± 1.18 (subconjunctival) vs 0.50 ± 0.27 (subtenon); temporal: 2.30 ± 0.40 vs 0.10 ± 0.10; nasal: 5.30 ± 0.60 vs 0.30 ± 0.21; inferior: 6.00 ±1.29 vs 0.1 ± 0.1; all comparisons p < 0.001]. For subconjunctival blebs, the temporal quadrant showed fewer lymphatic outflow pathways compared to the nasal side (p = 0.005). Discussion: Subconjunctival blebs accessed greater lymphatic outflow compared to subtenon blebs. Furthermore, regional differences existed, with fewer lymphatic vessels temporal than at the other locations. Clinical significance: Aqueous humor drainage after glaucoma surgery is incompletely understood. The present manuscript adds to our understanding of how lymphatics might influence filtration bleb function. How to cite this article: Lee JY, Strohmaier CA, Akiyama G, et al. Bleb-related Porcine Lymphatic Outflow Is Greater from Subconjunctival compared to Subtenon Blebs. J Curr Glaucoma Pract 2022;16(3):144-151.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA