Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 821
Filtrar
2.
Dev Comp Immunol ; 159: 105223, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960294

RESUMO

Consideration is given to previous and more recent protocols for harvesting arthropod haemocytes from Galleria, Drosophila, mosquitoes, Limulus and crustaceans. The optimal harvesting of these cells is essential for meaningful studies of invertebrate immunity in vitro. The results of such experiments, however, have often been flawed due to a lack of understanding of the fragile nature of arthropod haemocytes on exposure to bacterial lipopolysaccharides, resulting in the aggregation and loss of cell types during haemolymph clotting. This article emphasizes that although there are similarities between mammalian neutrophils and arthropod haemocytes, the protocols required for the successful harvesting of these cells vary significantly. The various stages for the successful harvesting of arthropod haemocytes are described in detail and should provide invaluable advice to those requiring both high cell viability and recovery of the different cell types for subsequent experimentation.

3.
Med Vet Entomol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874531

RESUMO

Fleas (Siphonaptera) are holometabolous insects with larval and adult stages that exhibit vastly different ecologies from each other. Adult fleas are parasitic and feed exclusively on the blood of a vertebrate host, whereas flea larvae do not live on hosts and consume dried faecal blood from adult fleas. Because flea larvae rely on adult flea faeces for food, excrement and eggs must fall in the same location; thus, larval density is likely high in these restricted habitats. However, the influence of larval density on the subsequent adult stage has not been examined. In the present study, we utilized egg density to investigate density-dependent effects on larval development and adult body size in the cat flea (Ctenocephalides felis Bouché) (Siphonaptera: Pulicidae). Specifically, eggs were collected to create three different larval densities (n = 50, 100 and 150 per 56.7 cm2), and hatched larvae from all groups were fed an excess amount of adult faecal pellets. Larval development was measured by recording the proportion of eggs that developed to the pupal stage and the proportion of eggs that reached adulthood (eclosion). The body size of eclosed adults was quantified for both sexes using head length and length of the total body. We found that the number of eggs had no effect on the proportion of larvae that pupated or the proportion of larvae that eclosed; however, higher egg densities resulted in larger body sizes for both sexes. Overall, these data yield significant insight into how the ecology of larval fleas impacts the biology of the resultant adults.

4.
Trends Parasitol ; 40(7): 619-632, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824066

RESUMO

Vector-borne diseases (VBDs) impose devastating effects on human health and a heavy financial burden. Malaria, Lyme disease, and dengue fever are just a few examples of VBDs that cause severe illnesses. The current strategies to control VBDs consist mainly of environmental modification and chemical use, and to a small extent, genetic approaches. The genetic approaches, including transgenesis/genome modification and gene-drive technologies, provide the basis for developing new tools for VBD prevention by suppressing vector populations or reducing their capacity to transmit pathogens. The regulatory elements such as promoters are required for a robust sex-, tissue-, and stage-specific transgene expression. As discussed in this review, information on the regulatory elements is available for mosquito vectors but is scant for other vectors.


Assuntos
Regiões Promotoras Genéticas , Doenças Transmitidas por Vetores , Animais , Doenças Transmitidas por Vetores/prevenção & controle , Doenças Transmitidas por Vetores/transmissão , Humanos , Vetores Artrópodes/genética
5.
Mol Ecol ; 33(14): e17426, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825980

RESUMO

The animal gut microbiota is strongly influenced by environmental factors that shape their temporal dynamics. Although diet is recognized as a major driver of gut microbiota variation, dietary patterns have seldom been linked to gut microbiota dynamics in wild animals. Here, we analysed the gut microbiota variation between dry and rainy seasons across four Sceloporus species (S. aeneus, S. bicanthalis, S. grammicus and S. spinosus) from central Mexico in light of temporal changes in diet composition. The lizard microbiota was dominated by Firmicutes (now Bacillota) and Bacteroidota, and the closely related species S. aeneus and S. bicanthalis shared a great number of core bacterial taxa. We report species-specific seasonal changes in gut microbiota diversity and composition: greater alpha diversity during the dry compared to the rainy season in S. bicanthalis, the opposite pattern in S. aeneus, and no seasonal differences in S. grammicus and S. spinosus. Our findings indicated a positive association between gut bacterial composition and dietary composition for S. bicanthalis and S. grammicus, but bacterial diversity did not increase linearly with dietary richness in any lizard species. In addition, seasonality affected bacterial composition, and microbial community similarity increased between S. aeneus and S. bicanthalis, as well as between S. grammicus and S. spinosus. Together, our results illustrate that seasonal variation and dietary composition play a role in shaping gut microbiota in lizard populations, but this is not a rule and other ecological factors influence microbiota variation.


Assuntos
Bactérias , Dieta , Microbioma Gastrointestinal , Lagartos , Estações do Ano , Animais , Microbioma Gastrointestinal/genética , Lagartos/microbiologia , México , Bactérias/classificação , Bactérias/genética , Artrópodes/microbiologia , RNA Ribossômico 16S/genética , Biodiversidade
6.
Cell ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38876107

RESUMO

Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.

7.
Ecol Evol ; 14(6): e11555, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895571

RESUMO

Intraspecific variation in plants is expected to have profound impacts on the arthropod communities associated with them. Because sexual dimorphism in plants is expected to provide consistent variation among individuals of the same species, researchers have often studied the effect it has on associated arthropods. Nevertheless, most studies have focused on the effect of sexual dimorphism in a single or a few herbivores, thus overlooking the potential effects on the whole arthropod community. Our main objective was to evaluate effects of Buddleja cordata's plant-sex on its associated arthropod community. We surveyed 13 pairs of male and female plants every 2 months during a year (June 2010 to April 2011). Every sampling date, we measured plant traits (water content and leaf thickness), herbivory, and the arthropod community. We did not find differences in herbivory between plant sex or through time. However, we found differences in water content through time, with leaf water-content matching the environmental seasonality. For arthropod richness, we found 68 morphospecies associated with female and 72 with male plants, from which 53 were shared by both sexes. We did not observe differences in morphospecies richness; however, we found sex-associated differences in the diversity of all species and differences on the diversity of the most abundant species with an interesting temporal component. During peak flowering season, male plants showed higher values on both parameters, but during the peak fructification season female plants showed the higher values on both diversity parameters. Our research exemplifies the interaction between plant-phenology and plant-sex as drivers of arthropod communities' diversity, even when plant sexual-dimorphism is inconspicuous, and highlighting the importance of accounting for seasonal variation. We stress the need of conducting more studies that test this time-dependent framework in other dioecious systems, as it has the potential to reconcile previous contrasting observations reported in the literature.

8.
Sci Rep ; 14(1): 14258, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902289

RESUMO

Seal lice (Echinophthirius horridus) are bloodsucking ectoparasites of phocid seals and vectors of pathogens like the heartworm, Acanthocheilonema spirocauda. Grey and harbour seal populations are recovering in German waters and wildlife health surveillance is crucial for wildlife conservation. A new, high effort sampling protocol for seal lice was applied for grey and harbour seals along the German North- and Baltic Sea coast. Freshly dead seals were systematically sampled within a health monitoring of stranded seals over 12 months. Prevalence, intensity and distribution patterns of seal lice were analysed. 58% of harbour seals (n = 71) and 70% of grey seals (n = 10) were infected with seal lice. A majority of harbour seals displayed mild levels of infection, while three were moderately and two were severely infected. The head was the preferred predilection site, indicating that E. horridus prefers body areas with frequent access to atmospheric oxygen. Nits and different developmental stages were recorded in all age classes in grey and harbour seals in all seasons. For the first time, copulating specimens of E. horridus were recorded on a dead harbour seal, highlighting that E. horridus reproduces throughout the year on seals of all age classes in German waters.


Assuntos
Focas Verdadeiras , Animais , Prevalência , Focas Verdadeiras/parasitologia , Phoca/parasitologia , Feminino , Masculino , Infestações por Piolhos/epidemiologia , Infestações por Piolhos/veterinária , Infestações por Piolhos/parasitologia , Alemanha/epidemiologia , Ftirápteros
9.
Environ Sci Pollut Res Int ; 31(28): 40916-40924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834927

RESUMO

Fleas, one of the most significant ectoparasites, play a crucial role as vectors in spreading zoonotic diseases globally. The Qinghai Province, as part of the Qinghai-Tibet Plateau, is one of the provinces in China with the largest number of flea species. In this study, we characterized the microbial communities of eighty-five adult fleas, belonging to nineteen species within four families (Ceratophyllidae, Ctenophthalmidae, Leptopsyllidae, and Pulicidae). We identified a total of 1162 unique operational taxonomic units at the genus level, with flea-borne pathogens such as Wolbachia, Bartonella, Rickettsia being the members of top abundant taxa. Except for comparison between Ctenophthalmidae and Leptopsyllidae families, the analyses of both alpha- and beta- diversity indicators suggested that bacterial diversity varied among flea families. This could be attributed to flea phylogeny, which also influenced by their geographical sites and animal hosts. Results of Linear discriminant analysis effect size (LEfSe) indicated that 29 genera in Ceratophylloidea, 11 genera in Ctenophthalmidae, 15 genera in Leptopsyllidae, and 22 genera in Pulicidae were significantly responsible for explaining the differences among the four flea families (linear discriminant analysis score > 2, P < 0.05). Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) analyses showed that the functional pathways varied significantly across flea families, which was supported by the significant correlation between the functional pathways and the microbial communities.


Assuntos
Sifonápteros , Animais , Sifonápteros/microbiologia , Tibet , Animais Selvagens , Microbiota , China , Filogenia
10.
Ecol Evol ; 14(6): e11522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835519

RESUMO

The spatial arrangement of organisms is significantly influenced by the structure of vegetation. Bromeliads, characterized by a remarkable architectural design featuring rosette-like leaf arrangements for rainwater storage, act as habitats for various organisms. These organisms use bromeliads for shelter, foraging, reproduction and the supply of nutrients and moisture. This study investigated how specific aspects of bromeliad structure, such as the number, width and length of leaves, impact the behaviour and distribution patterns of the bromelicolous scorpion Tityus neglectus. In the examination of 110 sampled bromeliads, 33 scorpions were recorded, resulting in an occupancy rate of 30%. The likelihood of scorpion occurrence was associated with the plant's structure. The length and coefficient of variation in the width of leaves appeared as the main predictors, positively influencing scorpion presence while the number of leaves exhibited a negative relation with scorpion occurrence. The distribution of scorpions was uniform across the spatial design of bromeliads. Furthermore, T. neglectus demonstrated the ability to utilize water accumulated in the bromeliad to evade potential predators, submerging itself for, on mean, almost 8 min. We concluded that bromeliad structure is essential in shaping the distribution patterns and anti-predatory behaviour of T. neglectus.

11.
Ecol Lett ; 27(5): e14427, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698677

RESUMO

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.


Assuntos
Artrópodes , Biodiversidade , Aves , Clima , Comportamento Predatório , Árvores , Animais , Artrópodes/fisiologia , Aves/fisiologia , Cadeia Alimentar , Larva/fisiologia
12.
Environ Monit Assess ; 196(6): 572, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38777911

RESUMO

This study analyzes arthropod biomass and abundance to track the changes in arthropod occurrence in relation to pesticide use in three winter wheat cropping systems managed at different intensities (organic, conventional, and hybrid). Arthropod occurrence was surveyed using three collection tools: sweeping nets, eclector traps, and yellow traps. Sampling was conducted over three years from 2020 to 2022 with 588 samples collected. The wet weight of the captured organisms was determined and arthropod abundance calculated. The application of a NOcsPS (no chemical-synthetic pesticides) strategy, a new hybrid cultivation method realized with optimized use of nitrogen fertilizers but without chemical-synthetic pesticides, showed a higher arthropod occurrence and performed more convincingly regarding produced arthropod biomass and abundance than the other cropping variants. The results also demonstrate a dependence of the obtained insect indices on the collection method. Although arthropod biomass and abundance correlated for all collection methods, the combination of various methods as well as multiple procedures of sample analysis gives a more realistic and comprehensive view of the impact of the wheat cultivation systems on the arthropod fauna than one-factor analyses.


Assuntos
Artrópodes , Monitoramento Ambiental , Fertilizantes , Nitrogênio , Triticum , Triticum/crescimento & desenvolvimento , Animais , Nitrogênio/análise , Monitoramento Ambiental/métodos , Agricultura/métodos , Praguicidas/análise , Controle de Pragas/métodos , Biomassa
13.
mBio ; 15(6): e0012424, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38722159

RESUMO

Transmission of Yersinia pestis by fleas depends on the formation of condensed bacterial aggregates embedded within a gel-like matrix that localizes to the proventricular valve in the flea foregut and interferes with normal blood feeding. This is essentially a bacterial biofilm phenomenon, which at its end stage requires the production of a Y. pestis exopolysaccharide that bridges the bacteria together in a cohesive, dense biofilm that completely blocks the proventriculus. However, bacterial aggregates are evident within an hour after a flea ingests Y. pestis, and the bacterial exopolysaccharide is not required for this process. In this study, we characterized the biochemical composition of the initial aggregates and demonstrated that the yersinia murine toxin (Ymt), a Y. pestis phospholipase D, greatly enhances rapid aggregation following infected mouse blood meals. The matrix of the bacterial aggregates is complex, containing large amounts of protein and lipid (particularly cholesterol) derived from the flea's blood meal. A similar incidence of proventricular aggregation occurred after fleas ingested whole blood or serum containing Y. pestis, and intact, viable bacteria were not required. The initial aggregation of Y. pestis in the flea gut is likely due to a spontaneous physical process termed depletion aggregation that occurs commonly in environments with high concentrations of polymers or other macromolecules and particles such as bacteria. The initial aggregation sets up subsequent binding aggregation mediated by the bacterially produced exopolysaccharide and mature biofilm that results in proventricular blockage and efficient flea-borne transmission. IMPORTANCE: Yersinia pestis, the bacterial agent of plague, is maintained in nature in mammal-flea-mammal transmission cycles. After a flea feeds on a mammal with septicemic plague, the bacteria rapidly coalesce in the flea's digestive tract to form dense aggregates enveloped in a viscous matrix that often localizes to the foregut. This represents the initial stage of biofilm development that potentiates transmission of Y. pestis when the flea later bites a new host. The rapid aggregation likely occurs via a depletion-aggregation mechanism, a non-canonical first step of bacterial biofilm development. We found that the biofilm matrix is largely composed of host blood proteins and lipids, particularly cholesterol, and that the enzymatic activity of a Y. pestis phospholipase D (Ymt) enhances the initial aggregation. Y. pestis transmitted by flea bite is likely associated with this host-derived matrix, which may initially shield the bacteria from recognition by the host's intradermal innate immune response.


Assuntos
Biofilmes , Fosfolipase D , Sifonápteros , Yersinia pestis , Yersinia pestis/enzimologia , Fosfolipase D/metabolismo , Sifonápteros/microbiologia , Biofilmes/crescimento & desenvolvimento , Peste/microbiologia , Peste/transmissão , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/microbiologia , Matriz Extracelular de Substâncias Poliméricas/ultraestrutura , Polissacarídeos/metabolismo , Microscopia Eletrônica de Transmissão , Proteoma/metabolismo , Animais , Camundongos , Lipídeos/análise
14.
mSystems ; 9(6): e0032124, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38742892

RESUMO

Ticks are increasingly important vectors of human and agricultural diseases. While many studies have focused on tick-borne bacteria, far less is known about tick-associated viruses and their roles in public health or tick physiology. To address this, we investigated patterns of bacterial and viral communities across two field populations of western black-legged ticks (Ixodes pacificus). Through metatranscriptomic analysis of 100 individual ticks, we quantified taxon prevalence, abundance, and co-occurrence with other members of the tick microbiome. In addition to commonly found tick-associated microbes, we assembled 11 novel RNA virus genomes from Rhabdoviridae, Chuviridae, Picornaviridae, Phenuiviridae, Reoviridae, Solemovidiae, Narnaviridae and two highly divergent RNA virus genomes lacking sequence similarity to any known viral families. We experimentally verified the presence of these in I. pacificus ticks across several life stages. We also unexpectedly identified numerous virus-like transcripts that are likely encoded by tick genomic DNA, and which are distinct from known endogenous viral element-mediated immunity pathways in invertebrates. Taken together, our work reveals that I. pacificus ticks carry a greater diversity of viruses than previously appreciated, in some cases resulting in evolutionarily acquired virus-like transcripts. Our findings highlight how pervasive and intimate tick-virus interactions are, with major implications for both the fundamental biology and vectorial capacity of I. pacificus ticks. IMPORTANCE: Ticks are increasingly important vectors of disease, particularly in the United States where expanding tick ranges and intrusion into previously wild areas has resulted in increasing human exposure to ticks. Emerging human pathogens have been identified in ticks at an increasing rate, and yet little is known about the full community of microbes circulating in various tick species, a crucial first step to understanding how they interact with each and their tick host, as well as their ability to cause disease in humans. We investigated the bacterial and viral communities of the Western blacklegged tick in California and found 11 previously uncharacterized viruses circulating in this population.


Assuntos
Ixodes , Animais , Ixodes/virologia , Ixodes/microbiologia , Transcriptoma , RNA Mensageiro/genética , Microbiota/genética , Genoma Viral/genética , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Bactérias/genética , Bactérias/virologia , Bactérias/isolamento & purificação
15.
Zookeys ; 1198: 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693971

RESUMO

Hanseniellachilensis is the only myriapod of the class Symphyla known from Chile. This garden centipede, or pseudocentipede, was described more than 120 years ago based on morphologically incomplete specimens collected in central Chile, a well-known biodiversity hotspot. In this study, we redescribe this species based on morphologically complete specimens collected near the type locality using scanning electron microscope images. Our study provides the description of diagnostic characters hitherto unknown in this species such as macrochaetae of the tergites and spinnerets of the cerci. We also include a new record from central Chile and discuss the presumed presence of this species in Argentina and Madagascar.

16.
Biodivers Data J ; 12: e118262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721273

RESUMO

Background: High biodiversity in the tropics is good for ecosystem services; however, challenges in taxonomy and identification usually come from such high biodiversity. Spiders are no exception to the challenges. Identifying spiders in tropical places like Thailand is difficult and time consuming. To reduce the difficulty of identifying Thai spiders, a data retrieval system for geographical occurrence and photographic identification was conducted to deploy on an online platform, Spiders in Thailand (SIT) via the website "spiderthailand.info". This allows professional arachnologists and amateur spider lovers to visit and check the geographical distribution of Thai spiders and to quickly access pictures for comparative photographic identification. To facilitate Thai spider identification, there were two parts, the database and the website, which are connected to each other. Data of Thai spiders were extracted from the World Spider Catalog to build a database comprising geographical occurrence and pictures of spider species in Thailand. The database was then linked with the website to display data. New information: The dataset of pictures and illustrations extracted from taxonomic literature of the World Spider Catalog were included in the database for connecting with the online platform, Spiders in Thailand (SIT) via the website "spiderthailand.info" which facilitated access to pictures and illustrations, expediting the identification of Thai spider specimens. Geographical occurrences of Thai spiders consisted of 1419 records belonging to 670 species of 228 genera and 50 families. Amongst those, 461 species from 133 genera of 41 families were distributed only in Thailand. Around Thailand, 756 geographical localities were reported for spider occurrences. From 76 provinces and one additional special administrative area (Bangkok), 58 provinces showed occurrence records of spiders and 18 provinces showed non-occurrence records. Those provinces of non-occurrence records of spiders were Amnat Charoen, Ang Thong, Bueng Kan, Chai Nat, Maha Sarakham, Mukdahan, Nakhon Phanom, Nong Bua Lam Phu, Nonthaburi, Phayao, Phichit, Phra Nakhon Si Ayutthaya, Samut Prakan, Samut Sakhon, Si Sa Ket, Sing Buri, Uthai Thani and Yasothon. Most spiders were reported from Chiang Mai Province.

18.
Zoonoses Public Health ; 71(5): 503-514, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38627945

RESUMO

AIMS: Q fever is a globally distributed, neglected zoonotic disease of conservation and public health importance, caused by the bacterium Coxiella burnetii. Coxiella burnetii normally causes subclinical infections in livestock, but may also cause reproductive pathology and spontaneous abortions in artiodactyl species. One such artiodactyl, the dromedary camel (Camelus dromedarius), is an increasingly important livestock species in semi-arid landscapes. Ticks are naturally infected with C. burnetii worldwide and are frequently found on camels in Kenya. In this study, we assessed the relationship between dromedary camels' C. burnetii serostatus and whether the camels were carrying C. burnetii PCR-positive ticks in Kenya. We hypothesized that there would be a positive association between camel seropositivity and carrying C. burnetii PCR-positive ticks. METHODS AND RESULTS: Blood was collected from camels (N = 233) from three herds, and serum was analysed using commercial ELISA antibody test kits. Ticks were collected (N = 4354), divided into pools of the same species from the same camel (N = 397) and tested for C. burnetii and Coxiella-like endosymbionts. Descriptive statistics were used to summarize seroprevalence by camel demographic and clinical variables. Univariate logistic regression analyses were used to assess relationships between serostatus (outcome) and tick PCR status, camel demographic variables, and camel clinical variables (predictors). Camel C. burnetii seroprevalence was 52%. Across tick pools, the prevalence of C. burnetii was 15% and Coxiella-like endosymbionts was 27%. Camel seropositivity was significantly associated with the presence of a C. burnetii PCR-positive tick pool (OR: 2.58; 95% CI: 1.4-5.1; p = 0.0045), increasing age class, and increasing total solids. CONCLUSIONS: The role of ticks and camels in the epidemiology of Q fever warrants further research to better understand this zoonotic disease that has potential to cause illness and reproductive losses in humans, livestock, and wildlife.


Assuntos
Camelus , Coxiella burnetii , Febre Q , Animais , Camelus/microbiologia , Coxiella burnetii/isolamento & purificação , Coxiella burnetii/genética , Febre Q/epidemiologia , Febre Q/veterinária , Febre Q/microbiologia , Quênia/epidemiologia , Masculino , Estudos Soroepidemiológicos , Feminino , DNA Bacteriano , Carrapatos/microbiologia , Infestações por Carrapato/veterinária , Infestações por Carrapato/epidemiologia
20.
J Clin Aesthet Dermatol ; 17(3-4 Suppl 1): S21-S22, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601786

RESUMO

Ticks are well-known vectors for transmitting disease and cause a variety of cutaneous manifestations to their afflicted host. Tick bite alopecia serves as a lesser-known illustration of this phenomenon, as few cases are documented in the literature. Scarring and nonscarring forms of tick-induced alopecia are described, with the latter being more common. This case highlights an adult female patient who developed a localized oval zone of midparietal scalp hair loss two months after the detection and removal of several ticks on her scalp. The chronicled events, clinical findings, and histopathology results further confirm a particular pattern of manifestation for tick bite alopecia. This case illustrates the importance of recognizing and considering tick bites as a possible cause of focal hair loss, given a similar presentation and historical account.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA