Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Otolaryngol Clin North Am ; 57(5): 871-886, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38839554

RESUMO

Successful artificial intelligence (AI) implementation is predicated on the trust of clinicians and patients, and is achieved through a culture of responsible use, focusing on regulations, standards, and education. Otolaryngologists can overcome barriers in AI implementation by promoting data standardization through professional societies, engaging in institutional efforts to integrate AI, and developing otolaryngology-specific AI education for both trainees and practitioners.


Assuntos
Inteligência Artificial , Otolaringologia , Humanos , Otolaringologia/educação , Estados Unidos
2.
Digit Health ; 10: 20552076241258757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817839

RESUMO

The development of artificial intelligence (AI) has revolutionised the medical system, empowering healthcare professionals to analyse complex nonlinear big data and identify hidden patterns, facilitating well-informed decisions. Over the last decade, there has been a notable trend of research in AI, machine learning (ML), and their associated algorithms in health and medical systems. These approaches have transformed the healthcare system, enhancing efficiency, accuracy, personalised treatment, and decision-making. Recognising the importance and growing trend of research in the topic area, this paper presents a bibliometric analysis of AI in health and medical systems. The paper utilises the Web of Science (WoS) Core Collection database, considering documents published in the topic area for the last four decades. A total of 64,063 papers were identified from 1983 to 2022. The paper evaluates the bibliometric data from various perspectives, such as annual papers published, annual citations, highly cited papers, and most productive institutions, and countries. The paper visualises the relationship among various scientific actors by presenting bibliographic coupling and co-occurrences of the author's keywords. The analysis indicates that the field began its significant growth in the late 1970s and early 1980s, with significant growth since 2019. The most influential institutions are in the USA and China. The study also reveals that the scientific community's top keywords include 'ML', 'Deep Learning', and 'Artificial Intelligence'.

3.
Cureus ; 16(3): e55832, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38590455

RESUMO

Objective To identify key variables predictive of patient responses to microfragmented adipose tissue (MFAT) treatment in knee osteoarthritis (KOA) and evaluate its potential to delay or mitigate the need for total knee replacement (TKR). Methods We utilised a dataset comprising 329 patients treated with MFAT for KOA, incorporating variables such as gender, age, BMI, arthritic aetiology, radiological grade, and Oxford Knee Scores (OKS) pre- and post-treatment. We employed random forest regressors for model training and testing, with gender bias mitigation and outlier detection to enhance prediction accuracy. Model performance was assessed through root mean squared error (RMSE) and mean absolute error (MAE), with further validation in a TKR-suitable patient subset. Results The model achieved a test RMSE of 6.72 and an MAE of 5.38, reflecting moderate predictive accuracy across the patient cohort. Stratification by gender revealed no statistically significant differences between actual and predicted OKS improvements (p-values: males = 0.93, females = 0.92). For the subset of patients suitable for TKR, the model presented an increased RMSE of 9.77 and MAE of 7.81, indicating reduced accuracy in this group. The decision tree analysis identified pre-operative OKS, radiological grade, and gender as significant predictors of post-treatment outcomes, with pre-operative OKS being the most critical determinant. Patients with lower pre-operative OKS showed varying responses based on radiological severity and gender, suggesting a nuanced interaction between these factors in determining treatment efficacy. Conclusion This study highlights the potential of MFAT as a non-surgical alternative for KOA treatment, emphasising the importance of personalised patient assessments. While promising, the predictive model warrants further refinement and validation with a larger, more diverse dataset to improve its utility in clinical decision-making for KOA management.

4.
IEEE Trans Artif Intell ; 4(4): 764-777, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37954545

RESUMO

The black-box nature of machine learning models hinders the deployment of some high-accuracy medical diagnosis algorithms. It is risky to put one's life in the hands of models that medical researchers do not fully understand or trust. However, through model interpretation, black-box models can promptly reveal significant biomarkers that medical practitioners may have overlooked due to the surge of infected patients in the COVID-19 pandemic. This research leverages a database of 92 patients with confirmed SARS-CoV-2 laboratory tests between 18th January 2020 and 5th March 2020, in Zhuhai, China, to identify biomarkers indicative of infection severity prediction. Through the interpretation of four machine learning models, decision tree, random forests, gradient boosted trees, and neural networks using permutation feature importance, partial dependence plot, individual conditional expectation, accumulated local effects, local interpretable model-agnostic explanations, and Shapley additive explanation, we identify an increase in N-terminal pro-brain natriuretic peptide, C-reaction protein, and lactic dehydrogenase, a decrease in lymphocyte is associated with severe infection and an increased risk of death, which is consistent with recent medical research on COVID-19 and other research using dedicated models. We further validate our methods on a large open dataset with 5644 confirmed patients from the Hospital Israelita Albert Einstein, at São Paulo, Brazil from Kaggle, and unveil leukocytes, eosinophils, and platelets as three indicative biomarkers for COVID-19.

5.
Cureus ; 15(9): e45911, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37885556

RESUMO

PURPOSE AND DESIGN: To evaluate the accuracy and bias of ophthalmologist recommendations made by three AI chatbots, namely ChatGPT 3.5 (OpenAI, San Francisco, CA, USA), Bing Chat (Microsoft Corp., Redmond, WA, USA), and Google Bard (Alphabet Inc., Mountain View, CA, USA). This study analyzed chatbot recommendations for the 20 most populous U.S. cities. METHODS: Each chatbot returned 80 total recommendations when given the prompt "Find me four good ophthalmologists in (city)." Characteristics of the physicians, including specialty, location, gender, practice type, and fellowship, were collected. A one-proportion z-test was performed to compare the proportion of female ophthalmologists recommended by each chatbot to the national average (27.2% per the Association of American Medical Colleges (AAMC)). Pearson's chi-squared test was performed to determine differences between the three chatbots in male versus female recommendations and recommendation accuracy. RESULTS: Female ophthalmologists recommended by Bing Chat (1.61%) and Bard (8.0%) were significantly less than the national proportion of 27.2% practicing female ophthalmologists (p<0.001, p<0.01, respectively). ChatGPT recommended fewer female (29.5%) than male ophthalmologists (p<0.722). ChatGPT (73.8%), Bing Chat (67.5%), and Bard (62.5%) gave high rates of inaccurate recommendations. Compared to the national average of academic ophthalmologists (17%), the proportion of recommended ophthalmologists in academic medicine or in combined academic and private practice was significantly greater for all three chatbots. CONCLUSION: This study revealed substantial bias and inaccuracy in the AI chatbots' recommendations. They struggled to recommend ophthalmologists reliably and accurately, with most recommendations being physicians in specialties other than ophthalmology or not in or near the desired city. Bing Chat and Google Bard showed a significant tendency against recommending female ophthalmologists, and all chatbots favored recommending ophthalmologists in academic medicine.

6.
JMIR Med Educ ; 9: e50945, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578830

RESUMO

Large language models (LLMs) such as ChatGPT have sparked extensive discourse within the medical education community, spurring both excitement and apprehension. Written from the perspective of medical students, this editorial offers insights gleaned through immersive interactions with ChatGPT, contextualized by ongoing research into the imminent role of LLMs in health care. Three distinct positive use cases for ChatGPT were identified: facilitating differential diagnosis brainstorming, providing interactive practice cases, and aiding in multiple-choice question review. These use cases can effectively help students learn foundational medical knowledge during the preclinical curriculum while reinforcing the learning of core Entrustable Professional Activities. Simultaneously, we highlight key limitations of LLMs in medical education, including their insufficient ability to teach the integration of contextual and external information, comprehend sensory and nonverbal cues, cultivate rapport and interpersonal interaction, and align with overarching medical education and patient care goals. Through interacting with LLMs to augment learning during medical school, students can gain an understanding of their strengths and weaknesses. This understanding will be pivotal as we navigate a health care landscape increasingly intertwined with LLMs and artificial intelligence.

7.
Heliyon ; 9(6): e16812, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37303531

RESUMO

Objective: The objective of the study is to evaluate the performance of CNN-based proposed models for predicting patients' response to NAC treatment and the disease development process in the pathological area. The study aims to determine the main criteria that affect the model's success during training, such as the number of convolutional layers, dataset quality and depended variable. Method: The study uses pathological data frequently used in the healthcare industry to evaluate the proposed CNN-based models. The researchers analyze the classification performances of the models and evaluate their success during training. Results: The study shows that using deep learning methods, particularly CNN models, can offer strong feature representation and lead to accurate predictions of patients' response to NAC treatment and the disease development process in the pathological area. A model that predicts 'miller coefficient', 'tumor lymph node value', 'complete response in both tumor and axilla' values with high accuracy, which is considered to be effective in achieving complete response to treatment, has been created. Estimation performance metrics have been obtained as 87%, 77% and 91%, respectively. Conclusion: The study concludes that interpreting pathological test results with deep learning methods is an effective way of determining the correct diagnosis and treatment method, as well as the prognosis follow-up of the patient. It provides clinicians with a solution to a large extent, particularly in the case of large, heterogeneous datasets that can be challenging to manage with traditional methods. The study suggests that using machine learning and deep learning methods can significantly improve the performance of interpreting and managing healthcare data.

8.
J Med Internet Res ; 25: e41138, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36584303

RESUMO

BACKGROUND: Artificial intelligence (AI) is being increasingly adopted in the health care industry for administrative tasks, patient care operations, and medical research. OBJECTIVE: We aimed to examine health care workers' opinions about the adoption and implementation of AI-powered technology in the health care industry. METHODS: Data were comments about AI posted on a web-based forum by 905 health care professionals from at least 77 countries, from May 2013 to October 2021. Structural topic modeling was used to identify the topics of discussion, and hierarchical clustering was performed to determine how these topics cluster into different groups. RESULTS: Overall, 12 topics were identified from the collected comments. These comments clustered into 2 groups: impact of AI on health care system and practice and AI as a tool for disease screening, diagnosis, and treatment. Topics associated with negative sentiments included concerns about AI replacing human workers, impact of AI on traditional medical diagnostic procedures (ie, patient history and physical examination), accuracy of the algorithm, and entry of IT companies into the health care industry. Concerns about the legal liability for using AI in treating patients were also discussed. Positive topics about AI included the opportunity offered by the technology for improving the accuracy of image-based diagnosis and for enhancing personalized medicine. CONCLUSIONS: The adoption and implementation of AI applications in the health care industry are eliciting both enthusiasm and concerns about patient care quality and the future of health care professions. The successful implementation of AI-powered technologies requires the involvement of all stakeholders, including patients, health care organization workers, health insurance companies, and government regulatory agencies.


Assuntos
Algoritmos , Inteligência Artificial , Humanos , Atitude , Mineração de Dados , Pessoal de Saúde
9.
Front Neurol ; 14: 1258323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322797

RESUMO

Cognitive impairments are a prevalent consequence of acquired brain injury, dementia, and age-related cognitive decline, hampering individuals' daily functioning and independence, with significant societal and economic implications. While neurorehabilitation represents a promising avenue for addressing these deficits, traditional rehabilitation approaches face notable limitations. First, they lack adaptability, offering one-size-fits-all solutions that may not effectively meet each patient's unique needs. Furthermore, the resource-intensive nature of these interventions, often confined to clinical settings, poses barriers to widespread, cost-effective, and sustained implementation, resulting in suboptimal outcomes in terms of intervention adaptability, intensity, and duration. In response to these challenges, this paper introduces NeuroAIreh@b, an innovative cognitive profiling and training methodology that uses an AI-driven framework to optimize neurorehabilitation prescription. NeuroAIreh@b effectively bridges the gap between neuropsychological assessment and computational modeling, thereby affording highly personalized and adaptive neurorehabilitation sessions. This approach also leverages virtual reality-based simulations of daily living activities to enhance ecological validity and efficacy. The feasibility of NeuroAIreh@b has already been demonstrated through a clinical study with stroke patients employing a tablet-based intervention. The NeuroAIreh@b methodology holds the potential for efficacy studies in large randomized controlled trials in the future.

10.
J Pers Med ; 11(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34575609

RESUMO

INTRODUCTION: Precision medicine is focused on serving the unique needs of individuals. Oral and oropharyngeal cancer risk assessment identifies individual risk factors while providing support to reduce risk. The objective is to examine potential current and future strategies to broadly implement evidence-based oral and oropharyngeal cancer risk assessment and screening in dental practices throughout the United States. METHODS: Feasible and effective oral cancer risk assessment and risk reduction strategies, ripe for implementation in dental practice, were identified in the published literature. RESULTS: The Screening, Brief Intervention, Referral for Treatment (SBIRT) model is a feasible approach to assessing individual oral cancer risk and providing risk reducing interventions in the dental setting. HPV is a more recently identified risk factor that dentistry is well positioned to address. Evidence supporting the utilization of specific risk assessment tools and risk reduction strategies is summarized and future opportunities discussed. DISCUSSION: Current knowledge of risk factors for oral and oropharyngeal cancers support the recommendation for dental providers to routinely assess all patients for risk factors, educate them about their personal level of cancer risk, and recommend actions to reduce relevant risk factors. Individuals ages 9-26 should be asked about their HPV vaccination status, educated about HPV and oropharyngeal cancer and receive a recommendation to get the HPV vaccination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA