Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 950: 175340, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117216

RESUMO

Ozone (O3) pollution with excessive near-surface O3 levels has been an important environmental issue in China, although the anthropogenic emission reductions (AER) have improved air quality since 2013. In this study, we investigated the sensitivities of atmospheric chemical environment with the urban and rural changes to the AER targeting a typical O3 pollution episode over North China in summer 2019, by conducting two WRF-Chem simulation experiments under two scenarios of anthropogenic emission inventories of years 2012 and 2019 with the meteorological conditions in the 2019 summertime O3 pollution episode for excluding the meteorological impacts on O3 pollution. The results show that the unbalanced AER aroused more serious O3 pollution in urban and rural areas. The intense NO reduction was responsible for the significant increments of urban O3, while the falling NO2 and NO synergistically devoted to the slight O3 variations in rural areas. Induced by the recent-year AER, the urban O3 production was governed by VOCs-limited and transition regime, whereas the NOx-limited regime dominated over rural areas in North China. Also, the AER reinforced the atmospheric oxidation capacity with the elevations of atmospheric oxidants O3 and ROx radicals, strengthening the chemical conversions to secondary inorganic particles. In both urban and rural areas, the sharp drop in SO2 caused a decrease in sulfate fraction, while the enhanced AOC accelerated the transformation to nitrate even when NOx was reduced. The AER induced nitrate to occupy the principal position in secondary PM2.5 in urban and rural areas. The AER promoted daytime and suppressed nighttime the nitrate production in urban areas, and more vigorous conversion of secondary aerosols were found in rural areas with much lower AOC increments. This study provides insights from a case study over North China in distinct responses of urban and rural O3 pollution with secondary particle changes to AER in urban and rural atmospheric environment changes, with implications for an effective abatement strategy on O3 pollution.

2.
Atmos Pollut Res ; 15(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39026942

RESUMO

Halogens (chlorine, bromine, and iodine) are known to profoundly influence atmospheric oxidants (hydroxyl radical (OH), hydroperoxyl radical (HO2), ozone (O3), and nitrate radical (NO3)) in the troposphere and subsequently affecting air quality. However, their impact on atmospheric oxidation and air pollution in coastal areas in China is poorly characterized. In this study, we use the WRF-CMAQ (Weather Research and Forecasting-Community Multiscale Air Quality) model with full halogen chemistry and process analysis to assess the influences and pathways of halogens on atmospheric oxidants in the Yangtze River Delta (YRD) region, a typical coastal city cluster in China. Halogens cause the annual OH radical increase by up to 16.4% and NO3 decrease by up to 45.3%. O3 increases by 2.0% in the YRD but decreases by 3.3% in marine environment. Halogen induced changes in atmospheric oxidants lead to a general increase of atmospheric oxidation capacity by 5.1% (maximum 48.4%). The production rate of OH (POH) in the YRD is enhanced by anthropogenic chlorine through both increased HO2 pathway and hypohalous acid photolysis pathway, while POH over ocean is enhanced by oceanic halogens through converting HO2 into hypohalous acid. Anthropogenic chlorine enhances both O3 and NO3 production (PNO3) rates through influencing their precursors while oceanic halogens reduce PNO3 and directly destroy ozone. Iodine contributed most (on average of 91% in oceanic halogens) in reducing production rates of oxidants. Thus, halogen emissions and potential effects of halogens on air quality need to be considered in air quality policies and regulations in the YRD region.

3.
Sci Total Environ ; 945: 173729, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38839009

RESUMO

PM2.5 and O3 are two of the main air pollutants that have adverse impacts on climate and human health. The evolution process of PM2.5 and O3 co-pollution are of concern because of the increased frequency of PM2.5 and O3 co-pollution days. Here, we examined the chemical coupling and revealed the driving factors of the PM2.5 and O3 co-pollution evolution process from cleaning day, PM2.5 pollution day, or O3 pollution day, applied by theoretical analysis and model calculation methods. The results demonstrate that PM2.5 and O3 co-pollution day frequently occurred with high concentrations of gaseous precursors and higher sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR), which we attribute to the enhancement of atmospheric oxidation capacity (AOC). The AOC is positively correlated with O3 and weakly correlated with PM2.5. In addition, we found that the correlation coefficients of PM2.5-NO2 (0.62) were higher than that of PM2.5-SO2 (0.32), highlighting the priority of NOx controlling to mitigate PM2.5 pollution. Overall, our discovery can provide scientific evidence to design feasible solutions for the controlling PM2.5 and O3 co-pollution process.

4.
Environ Sci Technol ; 58(20): 8815-8824, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38733566

RESUMO

This study presents the measurement of photochemical precursors during the lockdown period from January 23, 2020, to March 14, 2020, in Chengdu in response to the coronavirus (COVID-19) pandemic. To derive the lockdown impact on air quality, the observations are compared to the equivalent periods in the last 2 years. An observation-based model is used to investigate the atmospheric oxidation capacity change during lockdown. OH, HO2, and RO2 concentrations are simulated, which are elevated by 42, 220, and 277%, respectively, during the lockdown period, mainly due to the reduction in nitrogen oxides (NOx). However, the radical turnover rates, i.e., OH oxidation rate L(OH) and local ozone production rate P(O3), which determine the secondary intermediates formation and O3 formation, only increase by 24 and 48%, respectively. Therefore, the oxidation capacity increases slightly during lockdown, which is partly attributed to unchanged alkene concentrations. During the lockdown, alkene ozonolysis seems to be a significant radical primary source due to the elevated O3 concentrations. This unique data set during the lockdown period highlights the importance of controlling alkene emission to mitigate secondary pollution formation in Chengdu and may also be applicable in other regions of China given an expected NOx reduction due to the rapid transformation to electrified fleets in the future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Oxirredução , Ozônio , China , Atmosfera/química , Óxidos de Nitrogênio/análise , Monitoramento Ambiental , SARS-CoV-2 , Humanos
5.
Toxics ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38787110

RESUMO

Solar radiation triggers atmospheric nitrous acid (HONO) photolysis, producing OH radicals, thereby accelerating photochemical reactions, leading to severe secondary pollution formation. Missing daytime sources were detected in the extensive HONO budget studies carried out in the past. In the rural North China Plain, some studies attributed those to soil emissions and more recent studies to dew evaporation. To investigate the contributions of these two processes to HONO temporal variations and unknown production rates in rural areas, HONO and related field observations obtained at the Gucheng Agricultural and Ecological Meteorological Station during spring and autumn were thoroughly analyzed. Morning peaks in HONO frequently occurred simultaneously with those of ammonia (NH3) and water vapor both during spring and autumn, which were mostly caused by dew and guttation water evaporation. In spring, the unknown HONO production rate revealed pronounced afternoon peaks exceeding those in the morning. In autumn, however, the afternoon peak was barely detectable compared to the morning peak. The unknown afternoon HONO production rates were attributed to soil emissions due to their good relationship to soil temperatures, while NH3 soil emissions were not as distinctive as dew emissions. Overall, the relative daytime contribution of dew emissions was higher during autumn, while soil emissions dominated during spring. Nevertheless, dew emission remained the most dominant contributor to morning time HONO emissions in both seasons, thus being responsible for the initiation of daytime OH radical formation and activation of photochemical reactions, while soil emissions further maintained HONO and associated OH radial formation rates at a high level, especially during spring. Future studies need to thoroughly investigate the influencing factors of dew and soil emissions and establish their relationship to HONO emission rates, form reasonable parameterizations for regional and global models, and improve current underestimations in modeled atmospheric oxidation capacity.

6.
Sci Total Environ ; 932: 173011, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719052

RESUMO

Ozone pollution presents a growing air quality threat in urban agglomerations in China. It remains challenge to distinguish the roles of emissions of precursors, chemical production and transportations in shaping the ground-level ozone trends, largely due to complicated interactions among these 3 major processes. This study elucidates the formation factors of ozone pollution and categorizes them into local emissions (anthropogenic and biogenic emissions), transport (precursor transport and direct transport from various regions), and meteorology. Particularly, we attribute meteorology, which affects biogenic emissions and chemical formation as well as transportation, to a perturbation term with fluctuating ranges. The Community Multiscale Air Quality (CMAQ) model was utilized to implement this framework, using the Pearl River Delta region as a case study, to simulate a severe ozone pollution episode in autumn 2019 that affected the entire country. Our findings demonstrate that the average impact of meteorological conditions changed consistently with the variation of ozone pollution levels, indicating that meteorological conditions can exert significant control over the degree of ozone pollution. As the maximum daily 8-hour average (MDA8) ozone concentrations increased from 20 % below to 30 % above the National Ambient Air Quality Standard II, contributions from emissions and precursor transport were enhanced. Concurrently, direct transport within Guangdong province rose from 13.8 % to 22.7 %, underscoring the importance of regional joint prevention and control measures under adverse weather conditions. Regarding biogenic emissions and precursor transport that cannot be directly controlled, we found that their contributions were generally greater in urban areas with high nitrogen oxides (NOx) levels, primarily due to the stronger atmospheric oxidation capacity facilitating ozone formation. Our results indicate that not only local anthropogenic emissions can be controlled in urban areas, but also the impacts of local biogenic emissions and precursor transport can be potentially regulated through reducing atmospheric oxidation capacity.

7.
Natl Sci Rev ; 11(4): nwae074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623452

RESUMO

Tropospheric reactive bromine is important for atmospheric chemistry, regional air pollution, and global climate. Previous studies have reported measurements of atmospheric reactive bromine species in different environments, and proposed their main sources, e.g. sea-salt aerosol (SSA), oceanic biogenic activity, polar snow/ice, and volcanoes. Typhoons and other strong cyclonic activities (e.g. hurricanes) induce abrupt changes in different earth system processes, causing widespread destructive effects. However, the role of typhoons in regulating reactive bromine abundance and sources remains unexplored. Here, we report field observations of bromine oxide (BrO), a critical indicator of reactive bromine, on the Huaniao Island (HNI) in the East China Sea in July 2018. We observed high levels of BrO below 500 m with a daytime average of 9.7 ± 4.2 pptv and a peak value of ∼26 pptv under the influence of a typhoon. Our field measurements, supported by model simulations, suggest that the typhoon-induced drastic increase in wind speed amplifies the emission of SSA, significantly enhancing the activation of reactive bromine from SSA debromination. We also detected enhanced BrO mixing ratios under high NOx conditions (ppbv level) suggesting a potential pollution-induced mechanism of bromine release from SSA. Such elevated levels of atmospheric bromine noticeably increase ozone destruction by as much as ∼40% across the East China Sea. Considering the high frequency of cyclonic activity in the northern hemisphere, reactive bromine chemistry is expected to play a more important role than previously thought in affecting coastal air quality and atmospheric oxidation capacity. We suggest that models need to consider the hitherto overlooked typhoon- and pollution-mediated increase in reactive bromine levels when assessing the synergic effects of cyclonic activities on the earth system.

8.
Sci Total Environ ; 914: 169664, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163612

RESUMO

The atmospheric oxidation capacity (AOC) reflects the removal rate of atmospheric pollutants, and this index is typically characterized by the oxidant concentration or total reaction rate. The AOC plays a crucial role in the formation of atmospheric particulate matters and serves as an important indicator for studying changes in the concentration. In this study, we analyse the characteristics of atmospheric oxidants in Lanzhou based on data in the year of 2020 and 2021 retrieved from the Atmospheric Comprehensive Observation Station in Lanzhou. Empirical equations are applied to estimate the impact of atmospheric oxidative properties secondary generation concentrations of atmospheric particulate matters with different particle sizes. The results indicate that the annual average values of Ox were 146 µg/m3 in 2020 and 139 µg/m3 in 2021. The AOC was the highest in summer and lowest in winter. The correlation coefficient between O3 and Ox was significantly higher than that between NO2 and Ox, suggesting that O3 exerted a greater impact on the AOC in Lanzhou. A low AOC (MDA8 O3 ≤ 100 µg/m3) promoted the oxidation process of VOCs and other precursors, leading to the generation of secondary aerosols and subsequent formation of secondary particles. There were negative correlations between Ox and atmospheric particulate matters, secondary inorganic components, sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR), indicating that excessively high levels of Ox could inhibit the conversion rate of SO2 and NO2 into their respective forms to a certain extent.

9.
Sci Total Environ ; 914: 170033, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220000

RESUMO

Organic aerosol (OA) serves as a crucial component of fine particulate matter. However, the response of OA to changes in anthropogenic emissions remains unclear due to its complexity. The XXIV Olympic Winter Games (OWG) provided real atmospheric experimental conditions on studying the response of OA to substantial emission reductions in winter. Here, we explored the sources and variations of OA based on the observation of aerosol mass spectrometer (AMS) combined with positive matrix factorization (PMF) analysis in urban Beijing during the 2022 Olympic Winter Games. The influences of meteorological conditions on OA concentrations were corrected by CO and verified by deweathered model. The CO-normalized primary OA (POA) concentrations from traffic, cooking, coal and biomass burning during the OWG decreased by 39.8 %, 23.2 % and 65.0 %, respectively. Measures controlling coal and biomass burning were most effective in reducing POA during the OWG. For the CO-normalized concentration of secondary OA (SOA), aqueous-phase related oxygenated OA decreased by 51.8 % due to the lower relative humidity and emission reduction in precursors, while the less oxidized­oxygenated OA even slightly increased as the enhanced atmospheric oxidation processes may partially offset the efficacy of emission control. Therefore, more targeted reduction of organic precursors shall be enhanced to lower atmospheric oxidation capacity and mitigate SOA pollution.

10.
Sci Total Environ ; 915: 170037, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232856

RESUMO

Large missing sources of daytime atmospheric nitrous acid (HONO), a vital source of hydroxyl radicals (OH) through its photolysis, frequently exist in global coastal regions. In this study, ambient HONO and relevant species were measured at a coastal site in the Pearl River Delta (PRD), China, during October 2019. Relatively high concentrations (0.32 ± 0.19 ppbv) and daytime peaks at approximately 13:00 of HONO were observed, and HONO photolysis was found to be the dominant (55.5 %) source of the primary OH production. A budget analysis of HONO based on traditional sources suggested large unknown sources during the daytime (66.4 %), which had a significant correlation with the mass of coarse particles (PM2.5-10) and photolysis frequency (J(NO2)). When incorporating photolysis of the abundant nitrate measured in coarse particles with a reasonable enhancement factor relative to fine particles due to favorable aerosol conditions, the missing daytime sources of HONO could be fully compensated by coarse particles serving as the largest source at this coastal site. Our study revealed great potential of coarse particles as a strong daytime HONO source, which has been ignored before but can efficiently promote NOx recycling and thus significantly enhance atmospheric oxidation capacity.

11.
J Environ Sci (China) ; 139: 377-388, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105063

RESUMO

Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter, for which the reason have not been clearly elucidated. Here we measured carbonyl compounds and other trace gasses together with PM2.5 over urban Jinan in North China Plain during the winter. Markedly higher carbonyl concentrations (average: 14.63 ± 4.21 ppbv) were found during wintertime haze pollution, about one to three-times relative to those on non-haze days, with slight difference in chemical composition except formaldehyde (HCHO). HCHO (3.68 ppbv), acetone (3.17 ppbv), and acetaldehyde (CH3CHO) (2.83 ppbv) were the three most abundant species, accounting for ∼75% of the total carbonylson both haze and non-haze days. Results from observational-based model (OBM) with atmospheric oxidation capacity (AOC) indicated that AOC significantly increased with the increasing carbonyls during the winter haze events. Carbonyl photolysis have supplied key oxidants such as RO2 and HO2, and thereby enhancing the formation of fine particles and secondary organic aerosols, elucidating the observed haze-carbonyls inter-correlation. Diurnal variation with carbonyls exhibiting peak values at early-noon and night highlighted the combined contribution of both secondary formation and primary diesel-fuel sources. 1-butene was further confirmed to be the major precursor for HCHO. This study confirms the great contribution of carbonyls to AOC, and also suggests that reducing the emissions of carbonyls would be an effective way to mitigate haze pollution in urban area of the NCP region.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , China , Material Particulado/análise , Estações do Ano , Acetaldeído/análise , Monitoramento Ambiental , Aerossóis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA