RESUMO
Participating in the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, TYK2 emerges as a promising therapy target in controlling various autoimmune diseases, including psoriasis and multiple sclerosis. Deucravacitinib (DEU) is a novel oral TYK2-specific inhibitor approved in 2022 that is clinically effective in moderate to severe psoriasis trials. Upon the AlphaFold2 predicted TYK2 pseudokinase domain (JH2) and kinase domain (JH1), we explored the details of the underlined allosteric inhibition mechanism on TYK2 JH2-JH1 with the aid of molecular dynamics simulation. Our results suggest that the allosteric inhibition of DEU on TYK2 is accomplished by affecting the JH2-JH1 interface and hampering the state transition and ATP binding in JH1. Particularly, DEU binding stabilized the autoinhibitory interface between JH2 and JH1 while disrupting the formation of the activation interface. As a result, the negative regulation of JH2 on JH1 was greatly enhanced. These findings offer additional details on the pseudokinase-dependent autoinhibition of the JAK kinase domain and provide theoretical support for the JH2-targeted drug discovery in JAK members.
RESUMO
Raf protein kinases act as Ras-GTP sensing components of the ERK signal transduction pathway in animal cells, influencing cell proliferation, differentiation, and survival. In humans, somatic and germline mutations in the genes BRAF and RAF1 are associated with malignancies and developmental disorders. Recent studies shed light on the structure of activated Raf, a heterotetramer consisting of Raf and 14-3-3 dimers, and raised the possibility that a Raf C-terminal distal tail segment (DTS) regulates activation. We investigated the role of the DTS using the Caenorhabditis elegans Raf ortholog lin-45. Truncations removing the DTS strongly enhanced lin-45(S312A), a weak gain-of-function allele equivalent to RAF1 mutations found in patients with Noonan Syndrome. We genetically defined three elements of the LIN-45 DTS, which we termed the active site binding sequence (ASBS), the KTP motif, and the aromatic cluster. In the context of lin-45(S312A), mutation of each of these elements enhanced activity. We used AlphaFold to predict DTS protein interactions for LIN-45, fly Raf, and human BRAF, within the activated heterotetramer complex. We propose distinct functions for the LIN-45 DTS elements: i) the ASBS binds the kinase active site as an inhibitor, ii) phosphorylation of the KTP motif modulates DTS-kinase domain interaction, and iii) the aromatic cluster anchors the DTS in an inhibitory conformation. Human RASopathy-associated variants in BRAF affect residues of the DTS, consistent with these predictions. This work establishes that the Raf/LIN-45 DTS negatively regulates signaling in C. elegans and provides a model for its function in other Raf proteins.
RESUMO
RAF kinases, consisting of ARAF, BRAF and CRAF, are direct effectors of RAS GTPases and critical for signal transduction through the RAS-MAPK pathway. Driver mutations in BRAF are commonplace in human cancer, while germline mutations in BRAF and CRAF cause RASopathy development syndromes. However, there remains a lack of effective drugs that target RAF function, which is partially due to the complexity of the RAF activation cycle. Therefore, greater understanding of RAF regulation is required to identify new approaches that target its function in disease. A key piece of this puzzle is the RAF zinc finger, often referred to as the cysteine-rich domain (CRD). The CRD is a lipid and protein binding domain which plays complex and opposing roles in the RAF activation cycle. Firstly, it supports the RAS-RAF interaction during RAF activation by binding to phosphatidylserine (PS) in the plasma membrane and by making direct RAS contacts. Conversely, under quiescent conditions the CRD also plays a critical role in maintaining RAF in a closed, autoinhibited state. However, the interplay between these activities and their relative importance for RAF activation were not well understood. Recent structural and biochemical studies have contributed greatly to our understanding of these roles and identified functional differences between BRAF CRD and that of CRAF. This chapter provides an in-depth review of the CRDs roles in RAF regulation and how they may inform novel approaches to target RAF function.
Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Animais , Quinases raf/metabolismo , Domínios Proteicos , Cisteína/metabolismo , Mutação , Transdução de Sinais , Relação Estrutura-AtividadeRESUMO
The formin protein Diaph3 is an actin nucleator that regulates numerous cytoskeleton-dependent cellular processes through the activation of actin polymerization. Expression and activity of Diaph3 is tightly regulated: lack of Diaph3 results in developmental defects and embryonic lethality in mice, while overexpression of Diaph3 causes auditory neuropathy. It is known that Diaph3 homophilic interactions include the intramolecular interaction of its Dia-inhibitory domain (DID)-diaphanous autoregulatory domain (DAD) domains and the intermolecular interactions of DD-DD domains or FH2-FH2 domains. However, the physiological significance of these interactions in Diaph3 protein stability and activity is not fully understood. In this study, we show that FH2-FH2 interaction promotes Diaph3 activity, while DID-DAD and DD-DD interactions inhibit Diaph3 activity through distinct mechanisms. DID-DAD interaction is responsible for the autoinhibition of Diaph3 protein, which is disrupted by binding of Rho GTPases. Interestingly, we find that DID-DAD interaction stabilizes the expression of each DID or DAD domain against proteasomal-mediated degradation. Disruption of DID-DAD interaction by RhoA binding or M1041A mutation causes increased Diaph3 activity and accelerated degradation of the activated Diaph3 protein. Further, the activated Diaph3 is ubiquitinated at K1142/1143/1144 lysine residues by the E3 ligase Stub1. Expression of Stub1 is causally related to the stability and activity of Diaph3. Knockdown of Stub1 in mouse cochlea results in hair cell stereocilia defects, neuronal degeneration, and hearing loss, resembling the phenotypes of mice overexpressing Diaph3. Thus, our study reports a novel regulatory mechanism of Diaph3 protein expression and activity whereby the active but not inactive Diaph3 is readily degraded to prevent excessive actin polymerization.
RESUMO
The autoinhibited plasma membrane calcium ATPase ACA8 from A. thaliana has an N-terminal autoinhibitory domain. Binding of calcium-loaded calmodulin at two sites located at residues 42-62 and 74-96 relieves autoinhibition of ACA8 activity. Through activity studies and a yeast complementation assay we investigated wild-type (WT) and N-terminally truncated ACA8 constructs (Δ20, Δ30, Δ35, Δ37, Δ40, Δ74 and Δ100) to explore the role of conserved motifs in the N-terminal segment preceding the calmodulin binding sites. Furthermore, we purified WT, Δ20- and Δ100-ACA8, tested activity in vitro and performed structural studies of purified Δ20-ACA8 stabilized in a lipid nanodisc to explore the mechanism of autoinhibition. We show that an N-terminal segment between residues 20 and 35 including conserved Phe32, upstream of the calmodulin binding sites, is important for autoinhibition and the activation by calmodulin. Cryo-EM structure determination at 3.3 Å resolution of a beryllium fluoride inhibited E2 form, and at low resolution for an E1 state combined with AlphaFold prediction provide a model for autoinhibition, consistent with the mutational studies.
Assuntos
Proteínas de Arabidopsis , Calmodulina , Ligação Proteica , Calmodulina/metabolismo , Calmodulina/química , Calmodulina/genética , Sítios de Ligação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , ATPases Transportadoras de Cálcio/metabolismo , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/genética , Microscopia Crioeletrônica , Cálcio/metabolismo , Modelos Moleculares , Berílio/química , Berílio/metabolismo , Conformação Proteica , FluoretosRESUMO
Ubiquitin-specific proteases (USPs) are a family of multi-domain deubiquitinases (DUBs) with variable architectures, some containing regulatory auxiliary domains. Among the USP family, all occurrences of intramolecular regulation presently known are autoactivating. USP8 remains the sole exception as its putative WW-like domain, conserved only in vertebrate orthologs, is autoinhibitory. Here, we present a comprehensive structure-function analysis describing the autoinhibition of USP8 and provide evidence of the physical interaction between the WW-like and catalytic domains. The solution structure of full-length USP8 reveals an extended, monomeric conformation. Coupled with DUB assays, the WW-like domain is confirmed to be the minimal autoinhibitory unit. Strikingly, autoinhibition is only observed with the WW-like domain in cis and depends on the length of the linker tethering it to the catalytic domain. Modeling of the WW:CD complex structure and mutagenesis of interface residues suggests a novel binding site in the S1 pocket. To investigate the interplay between phosphorylation and USP8 autoinhibition, we identify AMP-activated protein kinase as a highly selective modifier of S718 in the 14-3-3 binding motif. We show that 14-3-3γ binding to phosphorylated USP8 potentiates autoinhibition in a WW-like domain-dependent manner by stabilizing an autoinhibited conformation. These findings provide mechanistic details on the autoregulation of USP8 and shed light on its evolutionary significance.
RESUMO
The N-terminal region of the human lysine-specific demethylase 1 (LSD1) has no predicted structural elements, contains a nuclear localization signal (NLS), undergoes multiple posttranslational modifications (PTMs), and acts as a protein-protein interaction hub. This intrinsically disordered region (IDR) extends from core LSD1 structure, resides atop the catalytic active site, and is known to be dispensable for catalysis. Here, we show differential nucleosome binding between the full-length and an N terminus deleted LSD1 and identify that a conserved NLS and PTM containing element of the N terminus contains an alpha helical structure, and that this conserved element impacts demethylation. Enzyme assays reveal that LSD1's own electropositive NLS amino acids 107 to 120 inhibit demethylation activity on a model histone 3 lysine 4 dimethyl (H3K4me2) peptide (Kiapp â¼ 3.3 µM) and histone 3 lysine 4 dimethyl nucleosome substrates (IC50 â¼ 30.4 µM), likely mimicking the histone H3 tail. Further, when the identical, inhibitory NLS region contains phosphomimetic modifications, inhibition is partially relieved. Based upon these results and biophysical data, a regulatory mechanism for the LSD1-catalyzed demethylation reaction is proposed whereby NLS-mediated autoinhibition can occur through electrostatic interactions, and be partially relieved through phosphorylation that occurs proximal to the NLS. Taken together, the results highlight a dynamic and synergistic role for PTMs, intrinsically disordered regions, and structured regions near LSD1 active site and introduces the notion that phosphorylated mediated NLS regions can function to fine-tune chromatin modifying enzyme activity.
Assuntos
Histona Desmetilases , Histonas , Sinais de Localização Nuclear , Nucleossomos , Histona Desmetilases/metabolismo , Histona Desmetilases/química , Histona Desmetilases/genética , Humanos , Sinais de Localização Nuclear/metabolismo , Nucleossomos/metabolismo , Histonas/metabolismo , Histonas/química , Processamento de Proteína Pós-Traducional , Domínio CatalíticoRESUMO
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase that is activated by phosphorylation events downstream of FcR, B-cell and T-cell receptors, integrins, and C-type lectin receptors. When the tandem Src homology 2 (SH2) domains of SYK bind to phosphorylated immunoreceptor tyrosine-based activation motifs (pITAMs) contained within these immunoreceptors, or when SYK is phosphorylated in interdomain regions A and B, SYK is activated. SYK gain-of-function (GoF) variants were previously identified in six patients that had higher levels of phosphorylated SYK and phosphorylated downstream proteins JNK and ERK. Furthermore, the increased SYK activation resulted in the clinical manifestation of immune dysregulation, organ inflammation, and a predisposition for lymphoma. The knowledge that the SYK GoF variants have enhanced activity was leveraged to develop a SYK NanoBRET cellular target engagement assay in intact live cells with constructs for the SYK GoF variants. Herein, we developed a potent SYK-targeted NanoBRET tracer using a SYK donated chemical probe, MRL-SYKi, that enabled a NanoBRET cellular target engagement assay for SYK GoF variants, SYK(S550Y), SYK(S550F), and SYK(P342T). We determined that ATP-competitive SYK inhibitors bind potently to these SYK variants in intact live cells. Additionally, we demonstrated that MRL-SYKi can effectively reduce the catalytic activity of SYK variants, and the phosphorylation levels of SYK(S550Y) in an epithelial cell line (SW480) stably expressing SYK(S550Y).
RESUMO
Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , RNA de Cadeia Dupla , Ribonuclease III , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/metabolismo , Ribonuclease III/química , Ribonuclease III/genética , Microscopia Crioeletrônica , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases/metabolismo , RNA Helicases/genética , RNA Helicases/química , Ligação Proteica , Trifosfato de Adenosina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/químicaRESUMO
Microtubule-based kinesin motor proteins are crucial for intracellular transport, but their hyperactivation can be detrimental for cellular functions. This study investigated the impact of a constitutively active ciliary kinesin mutant, OSM-3CA, on sensory cilia in C. elegans. Surprisingly, we found that OSM-3CA was absent from cilia but underwent disposal through membrane abscission at the tips of aberrant neurites. Neighboring glial cells engulf and eliminate the released OSM-3CA, a process that depends on the engulfment receptor CED-1. Through genetic suppressor screens, we identified intragenic mutations in the OSM-3CA motor domain and mutations inhibiting the ciliary kinase DYF-5, both of which restored normal cilia in OSM-3CA-expressing animals. We showed that conformational changes in OSM-3CA prevent its entry into cilia, and OSM-3CA disposal requires its hyperactivity. Finally, we provide evidence that neurons also dispose of hyperactive kinesin-1 resulting from a clinic variant associated with amyotrophic lateral sclerosis, suggesting a widespread mechanism for regulating hyperactive kinesins.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cílios , Cinesinas , Neuroglia , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neuroglia/metabolismo , Cílios/metabolismo , Neurônios/metabolismo , Mutação , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologiaRESUMO
Autoinhibition is a prevalent allosteric regulatory mechanism in signaling proteins. Reduced autoinhibition underlies the tumorigenic effect of some known cancer drivers, but whether autoinhibition is altered generally in cancer remains elusive. Here, we demonstrate that cancer-associated missense mutations, in-frame insertions/deletions, and fusion breakpoints are enriched within inhibitory allosteric switches (IASs) across all cancer types. Selection for IASs that are recurrently mutated in cancers identifies established and unknown cancer drivers. Recurrent missense mutations in IASs of these drivers are associated with distinct, cancer-specific changes in molecular signaling. For the specific case of PPP3CA, the catalytic subunit of calcineurin, we provide insights into the molecular mechanisms of altered autoinhibition by cancer mutations using biomolecular simulations, and demonstrate that such mutations are associated with transcriptome changes consistent with increased calcineurin signaling. Our integrative study shows that autoinhibition-modulating genetic alterations are positively selected for by cancer cells.
Assuntos
Calcineurina , Neoplasias , Humanos , Calcineurina/genética , Neoplasias/genética , Mutação/genética , Carcinogênese , Mutação de Sentido Incorreto/genéticaRESUMO
P4 ATPases are active membrane transporters that translocate lipids towards the cytosolic side of the biological membranes in eukaryotic cells. Due to their essential cellular functions, P4 ATPase activity is expected to be tightly controlled, but fundamental aspects of the regulation of plant P4 ATPases remain unstudied. In this mini-review, our knowledge of the regulatory mechanisms of yeast and mammalian P4 ATPases will be summarized, and sequence comparison and structural modelling will be used as a basis to discuss the putative regulation of the corresponding plant lipid transporters.
Assuntos
Adenosina Trifosfatases , Proteínas de Membrana Transportadoras , Animais , Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Lipídeos , Mamíferos/metabolismoRESUMO
Ack1 is a nonreceptor tyrosine kinase that is associated with cellular proliferation and survival. The receptor tyrosine kinase Mer, a member of the TAM family of receptors, has previously been reported to be an upstream activator of Ack1 kinase. The mechanism linking the two kinases, however, has not been investigated. We confirmed that Ack1 and Mer interact by co-immunoprecipitation experiments and found that Mer expression led to increased Ack1 activity. The effect on Ack1 was dependent on the kinase activity of Mer, whereas mutation of the Mer C-terminal tyrosines Y867 and Y924 did not significantly decrease the ability of Mer to activate Ack1. Ack1 possesses a Mig6 Homology Region (MHR) that contains adjacent regulatory tyrosines (Y859 and Y860). Using synthetic peptides, we showed that Mer preferentially binds and phosphorylates the MHR sequence containing phosphorylated pY860, as compared to the pY859 sequence. This suggested the possibility of sequential phosphorylation within the MHR of Ack1, as has been observed previously for other kinases. In cells co-expressing Mer and Ack1 MHR mutants, the Y859F mutant had higher activity than the Y860F mutant, consistent with this model. The interaction between Mer and Ack1 could play a role in immune cell signaling in normal physiology and could also contribute to the hyperactivation of Ack1 in prostate cancer and other tumors.
RESUMO
Importin α is a nuclear transporter that binds to nuclear localization signals (NLSs), consisting of 7-20 positively charged amino acids found within cargo proteins. In addition to cargo binding, intramolecular interactions also occur within the importin α protein due to binding between the importin ß-binding (IBB) domain and the NLS-binding sites, a phenomenon called auto-inhibition. The interactions causing auto-inhibition are driven by a stretch of basic residues, similar to an NLS, in the IBB domain. Consistent with this, importin α proteins that do not have some of these basic residues lack auto-inhibition; a naturally occurring example of such a protein is found in the apicomplexan parasite Plasmodium falciparum. In this report, we show that importin α from another apicomplexan parasite, Toxoplasma gondii, harbors basic residues (KKR) in the IBB domain and exhibits auto-inhibition. This protein has a long, unstructured hinge motif (between the IBB domain and the NLS-binding sites) that does not contribute to auto-inhibition. However, the IBB domain may have a higher propensity to form an α-helical structure, positioning the wild-type KKR motif in an orientation that results in weaker interactions with the NLS-binding site than a KRR mutant. We conclude that the importin α protein from T. gondii shows auto-inhibition, exhibiting a different phenotype from that of P. falciparum importin α. However, our data indicate that T. gondii importin α may have a low strength of auto-inhibition. We hypothesize that low levels of auto-inhibition may confer an advantage to these important human pathogens.
Assuntos
Toxoplasma , alfa Carioferinas , Humanos , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Sequência de Aminoácidos , Toxoplasma/genética , Toxoplasma/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Sítios de Ligação , beta Carioferinas/química , beta Carioferinas/genética , beta Carioferinas/metabolismo , Ligação ProteicaRESUMO
BRAF is a key member in the MAPK signaling pathway essential for cell growth, proliferation, and differentiation. Dysregulation or mutation of BRAF is often the underlying cause of various types of cancer. RAS, a small GTPase protein that acts upstream of BRAF, has been identified as a driver of up to one-third of all cancers. When BRAF interacts with RAS via the RAS binding domain (RBD) and membrane recruitment, BRAF undergoes a conformational change from an inactive, autoinhibited monomer to an active dimer and subsequently phosphorylates MEK to propagate the signal. Despite the central role of BRAF in cellular signaling, the exact order and magnitude of its activation steps has yet to be confirmed experimentally. By studying the inter- and intramolecular interactions of BRAF, we unveil the domain-specific and isoform-specific details of BRAF regulation. We employed pulldown assays, open surface plasmon resonance (OpenSPR), and hydrogen-deuterium exchange mass spectrometry (HDX-MS) to investigate the roles of the regulatory regions in BRAF activation and autoinhibition. Our results demonstrate that the BRAF specific region (BSR) and cysteine rich domain (CRD) play a crucial role in regulating the activity of BRAF. Moreover, we quantified the autoinhibitory binding affinities between the N-terminal domains and the kinase domain (KD) of BRAF and revealed the individual roles of the BRAF regulatory domains. Additionally, our findings provide evidence that the BSR negatively regulates BRAF activation in a RAS isoform-specific manner. Our findings also indicate that oncogenic BRAF-KDD594G mutant has a lower affinity for the regulatory domains, implicating that pathogenic BRAF acts through decreased propensity for autoinhibition. Collectively, our study provides valuable insights into the activation mechanism of BRAF kinase and may help to guide the development of new therapeutic strategies for cancer treatment.
RESUMO
Phafins are PH (Pleckstrin Homology) and FYVE (Fab1, YOTB, Vac1, and EEA1) domain-containing proteins. The Phafin protein family is classified into two groups based on their sequence homology and functional similarity: Phafin1 and Phafin2. This protein family is unique because both the PH and FYVE domains bind to phosphatidylinositol 3-phosphate [PtdIns(3)P], a phosphoinositide primarily found in endosomal and lysosomal membranes. Phafin proteins act as PtdIns(3)P effectors in apoptosis, endocytic cargo trafficking, and autophagy. Additionally, Phafin2 is recruited to macropinocytic compartments through coincidence detection of PtdIns(3)P and PtdIns(4)P. Membrane-associated Phafins serve as adaptor proteins that recruit other binding partners. In addition to the phosphoinositide-binding domains, Phafin proteins present a poly aspartic acid motif that regulates membrane binding specificity. In this review, we summarize the involvement of Phafins in several cellular pathways and their potential physiological functions while highlighting the similarities and differences between Phafin1 and Phafin2. Besides, we discuss research perspectives for Phafins.
Assuntos
Proteínas de Transporte , Fosfatidilinositóis , Proteínas de Transporte/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Membranas Intracelulares/metabolismo , Apoptose , Endossomos/metabolismo , Ligação ProteicaRESUMO
2',3'-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2',3'-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway.
Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA , Imunidade InataRESUMO
Human WASP and N-WASP are homologous proteins that require the binding of multiple regulators, including the acidic lipid PIP2 and the small GTPase Cdc42, to relieve autoinhibition before they can stimulate the initiation of actin polymerization. Autoinhibition involves intramolecular binding of the C-terminal acidic and central motifs to an upstream basic region and GTPase binding domain. Little is known about how a single intrinsically disordered protein, WASP or N-WASP, binds multiple regulators to achieve full activation. Here we used molecular dynamics simulations to characterize the binding of WASP and N-WASP with PIP2 and Cdc42. In the absence of Cdc42, both WASP and N-WASP strongly associate with PIP2-containing membranes, through their basic region and also possibly through a tail portion of the N-terminal WH1 domain. The basic region also participates in Cdc42 binding, especially for WASP; consequently Cdc42 binding significantly compromises the ability of the basic region in WASP, but not N-WASP, to bind PIP2. PIP2 binding to the WASP basic region is restored only when Cdc42 is prenylated at the C-terminus and tethered to the membrane. This distinction in the activation of WASP and N-WASP may contribute to their different functional roles.
Assuntos
Prenilação de Proteína , Proteína da Síndrome de Wiskott-Aldrich , Proteína cdc42 de Ligação ao GTP , Humanos , Actinas/química , Actinas/metabolismo , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/metabolismo , Ligação Proteica , Proteína Neuronal da Síndrome de Wiskott-Aldrich/química , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/química , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Polimerização , Simulação de Dinâmica MolecularRESUMO
Phosphorylation is a ubiquitous mechanism by which signals are transduced in cells. Protein kinases, enzymes that catalyze the phosphotransfer reaction are, themselves, often regulated by phosphorylation. Paradoxically, however, a substantial fraction of more than 500 human protein kinases are capable of catalyzing their own activation loop phosphorylation. Commonly, these kinases perform this autophosphorylation reaction in trans, whereby transient dimerization leads to the mutual phosphorylation of the activation loop of the opposing protomer. In this study, we demonstrate that protein kinase D (PKD) is regulated by the inverse mechanism of dimerization-mediated trans-autoinhibition, followed by activation loop autophosphorylation in cis. We show that PKD forms a stable face-to-face homodimer that is incapable of either autophosphorylation or substrate phosphorylation. Dissociation of this trans-autoinhibited dimer results in activation loop autophosphorylation, which occurs exclusively in cis. Phosphorylation serves to increase PKD activity and prevent trans-autoinhibition, thereby switching PKD on. Our findings not only reveal the mechanism of PKD regulation but also have profound implications for the regulation of many other eukaryotic kinases.
Assuntos
Proteína Quinase C , Humanos , Fosforilação/fisiologia , Proteína Quinase C/metabolismoRESUMO
E3 ligase recruitment of proteins containing terminal destabilizing motifs (degrons) is emerging as a major form of regulation. How those E3s discriminate bona fide substrates from other proteins with terminal degron-like sequences remains unclear. Here, we report that human KLHDC2, a CRL2 substrate receptor targeting C-terminal Gly-Gly degrons, is regulated through interconversion between two assemblies. In the self-inactivated homotetramer, KLHDC2's C-terminal Gly-Ser motif mimics a degron and engages the substrate-binding domain of another protomer. True substrates capture the monomeric CRL2KLHDC2, driving E3 activation by neddylation and subsequent substrate ubiquitylation. Non-substrates such as NEDD8 bind KLHDC2 with high affinity, but its slow on rate prevents productive association with CRL2KLHDC2. Without substrate, neddylated CRL2KLHDC2 assemblies are deactivated via distinct mechanisms: the monomer by deneddylation and the tetramer by auto-ubiquitylation. Thus, substrate specificity is amplified by KLHDC2 self-assembly acting like a molecular timer, where only bona fide substrates may bind before E3 ligase inactivation.