RESUMO
Azetidines are almost unexplored among nitrogen-containing saturated heterocycles due to difficulties associated with their synthesis. However, over the past few years, attempts have been made by scientists to advance their synthetic feasibility. Compounds with the azetidine moiety display an important and diverse range of pharmacological activities, such as anticancer, antibacterial, antimicrobial, antischizophrenic, antimalarial, antiobesity, anti-inflammatory, antidiabetic, antiviral, antioxidant, analgesic, and dopamine antagonist activities, and are also useful for the treatment of central nervous system disorders and so forth. Owing to its satisfactory stability, molecular rigidity, and chemical and biological properties, azetidine has emerged as a valuable scaffold and it has drawn the attention of medicinal researchers. The present review sheds light on the traditional method of synthesis of azetidine and advancements in synthetic methodology over the past few years, along with its application with various examples, and its biological significance.
Assuntos
Azetidinas/farmacologia , Desenvolvimento de Medicamentos/métodos , Animais , Azetidinas/química , Estabilidade de Medicamentos , Humanos , Relação Estrutura-AtividadeRESUMO
Intramolecular atropselective aza Paternò-Büchi reaction involving atropisomeric enamide and imine functionalities under sensitized irradiation leads to azetidine products in good yield and selectivity (ee >96 %). A mechanistic model based on detailed photophysical and isomerization kinetic studies is provided that shed light into the reactivity of enamides leading to aza Paternò-Büchi reaction.