RESUMO
The Crumbs homolog 1 (CRB1) gene is associated with retinal degeneration, most commonly Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP). Here, we demonstrate that murine retinas bearing the Rd8 mutation of Crb1 are characterized by the presence of intralesional bacteria. While normal CRB1 expression was enriched in the apical junctional complexes of retinal pigment epithelium and colonic enterocytes, Crb1 mutations dampened its expression at both sites. Consequent impairment of the outer blood retinal barrier and colonic intestinal epithelial barrier in Rd8 mice led to the translocation of intestinal bacteria from the lower gastrointestinal (GI) tract to the retina, resulting in secondary retinal degeneration. Either the depletion of bacteria systemically or the reintroduction of normal Crb1 expression colonically rescued Rd8-mutation-associated retinal degeneration without reversing the retinal barrier breach. Our data elucidate the pathogenesis of Crb1-mutation-associated retinal degenerations and suggest that antimicrobial agents have the potential to treat this devastating blinding disease.
Assuntos
Proteínas do Tecido Nervoso , Degeneração Retiniana , Animais , Camundongos , Translocação Bacteriana , Proteínas do Olho/genética , Amaurose Congênita de Leber/genética , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologiaRESUMO
AIMS: Recent studies have suggested a key role of intestinal microbiota in pathological progress of multiple organs via immune modulation. However, the interactions between heart and gut microbiota remain to be fully elucidated. The aim of the study is to investigate the role of gut microbiota in the post-ischaemia/reperfusion (I/R) inflammatory microenvironment. METHODS AND RESULTS: Here, we conducted a case-control study to explore the association of gut bacteria translocation products with inflammation biomarkers and I/R injury severity in ST-elevation myocardial infarction patients. Then, we used a mouse model to determine the effects of myocardial I/R injury on gut microbiota dysbiosis and translocation. Blooming of Proteobacteria was identified as a hallmark of post-I/R dysbiosis, which was associated with gut bacteria translocation. Abrogation of gut bacteria translocation by antibiotic cocktail alleviated myocardial I/R injury via mitigating excessive inflammation and attenuating myeloid cells mobilization, indicating the bidirectional heart-gut-microbiome-immune axis in myocardial I/R injury. Glucagon-like peptide 2 (GLP-2), an endocrine peptide produced by intestinal L-cells, was used in the experimental myocardial I/R model. GLP-2 administration restored gut microbiota disorder and prevented bacteria translocation, eventually attenuated myocardial I/R injury through alleviating systemic inflammation. CONCLUSION: Our work identifies a bidirectional communication along the heart-gut-microbiome-immune axis in myocardial I/R injury and demonstrates gut bacteria translocation as a key regulator in amplifying inflammatory injury. Furthermore, our study sheds new light on the application of GLP-2 as a promising therapy targeting gut bacteria translocation in myocardial I/R injury.
Assuntos
Doença da Artéria Coronariana , Microbioma Gastrointestinal , Traumatismos Cardíacos , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Disbiose/microbiologia , Estudos de Casos e Controles , Inflamação , Isquemia , Reperfusão , ComunicaçãoRESUMO
Dietary factors are fundamental in tumorigenesis throughout our lifetime. A spicy diet has been ambiguous on the development of cancers, especially in the study of colon cancer metastasis. Here, we utilized a mouse metastasis model to test the potential role of capsaicin in influencing metastasis. Long-term continuous administration of capsaicin diet (300 mg/kg) to mice promotes the formation of liver pre-metastatic niche to facilitate the metastasis of colon cancer cells. Bacteria translocation to liver is clearly observed. Capsaicin increases intestinal barrier permeability and disrupts gut vascular barrier by altering the composition of gut microbiota. Capsaicin not only changes the abundance of mucin-related bacteria like Akkermanisa and Muribaculaceae, but also bacteria involved in bile acids metabolism. Dysregulated bile acids profile is related to the recruitment of natural killer T (NKT) cells in pre-metastatic niche, primary bile acid α-Muricholic acid can enhance the recruitment of NKT cells, while secondary bile acids Glycoursodeoxycholic acid and Taurohyodeoxycholic acid impair the recruitment of NKT cells. These findings reveal long term consumption of capsaicin increases the risk of cancer metastasis through modulating the gut microbiota. Capsaicin (300 mg/kg) disrupts gut barrier and promotes the translocation of bacteria to liver, while altered bile acids metabolism affects the recruitment of NKT cells in liver, forming a pre-metastatic niche and promoting cancer metastasis.
Assuntos
Neoplasias do Colo , Microbioma Gastrointestinal , Camundongos , Animais , Capsaicina/farmacologia , Fígado/metabolismo , Ácidos e Sais Biliares/metabolismo , Neoplasias do Colo/metabolismo , BactériasRESUMO
Creeping fat (CrF), also known as fat wrapping, is a significant disease characteristic of Crohn's disease (CD). The transmural inflammation impairs intestinal integrity and facilitates bacteria translocation, aggravating immune response. CrF is a rich source of pro-inflammatory and pro-fibrotic cytokines with complex immune microenvironment. The inflamed and stricturing intestine is often wrapped by CrF, and CrF is associated with greater severity of CD. The large amount of innate and adaptive immune cells as well as adipocytes in CrF promote fibrosis in the affected intestine by secreting large amount of pro-fibrotic cytokines, adipokines, growth factors and fatty acids. CrF is a potential therapeutic target for CD treatment and a promising bio-marker for predicting response to drug therapy. This review aims to summarize and update the clinical manifestation and application of CrF and the underlying molecular mechanism involved in the pathogenesis of intestinal inflammation and fibrosis in CD.
Assuntos
Doença de Crohn , Humanos , Doença de Crohn/complicações , Mesentério/metabolismo , Mesentério/patologia , Inflamação , Citocinas/metabolismo , FibroseRESUMO
OBJECTIVE: To observe the effect of electroacupuncture (EA) at "Zusanli" (ST36) on apoptosis of intestinal T lymphocytes, translocation of intestinal bacteria and expression of intestinal Bcl-2 and Bax proteins and intestinal mucosal immune barrier in sepsis rats, so as to explore its underlying mechanism in relieving sepsis. METHODS: SD rats were randomly divided into sham operation (n=6), model (n=15), non-meridian and non-acupoint (non-acupoint, n=15) and acupoint EA(n=15) groups by using random number table method. The sepsis model was established by using cecal ligation and perforation(CLP) method. EA (2 Hz, 2 mA) was applied to bilateral ST36 or non-acupoint for 30 min one hour after modeling, once every day for 3 days. The rats' general conditions and fatality rate in 3 days after modeling were recorded. The liver, spleen and mesenteric lymph nodes were taken for bacterial culture to detect the translocation rate of intestinal bacteria. The small intestinal tissue was taken for observing histopathological changes (Chiu's score: 0-5 points) after HE staining, and for determining the expression levels of Bcl-2 and Bax proteins using Western blot. The intestinal mucosa was sampled for detecting the apop-tosis (apoptotic index) of lymphocytes by using terminal deoxynucleoitidyl transferase-mediated deoxyuridine triphosphate biotin nick end labeling (TUNEL) assay, and the counts of CD4+ and CD8+T cells using flow cytometry. The contents of IL-4 in the small intestine and that of secretory IgA (sIgA) in the small intestinal mucus were determined by using ELISA. RESULTS: After modeling, of the 15 rats in each of the 3 groups, 7, 7 and 2 in the model, non-acupoint and EA groups were dead in the first 3 days, with the fatality rate being 46.67% (7/15), 46.67% (7/15) and 13.33% (2/15), respectively (being obviously lower in the EA group than in the former two groups, P<0.05). Compared with the sham operation group, the incidence of intestinal bacterial translocation, apoptotic index, Chiu's score, and Bax expression were significantly increased (P<0.05), and the percentages of CD4+ and CD8+T cells, IL-4 and sIgA contents and Bcl-2 expression considerably decreased (P<0.05) in the model group. In comparison with the model group, modeling-induced increase of incidence of bacterial translocation, apoptotic index and Bax expression, and decrease of percentages of CD4+ and CD8+T cells, IL-4 and sIgA contents and Bcl-2 expression were reversed (P<0.05) in the EA group. CONCLUSION: EA at ST36 can reduce death rate and intestinal bacteria translocation incidence in sepsis rats, which may be related to its functions in regulating the expression of intestinal Bcl-2 and Bax proteins and inhibiting the apoptosis of intestinal mucosal T lymphocytes, thereby protecting the immune barrier function of intestinal mucosa to reduce the intestinal permeability.
Assuntos
Eletroacupuntura , Sepse , Pontos de Acupuntura , Animais , Apoptose , Imunoglobulina A Secretora , Interleucina-4 , Mucosa Intestinal/metabolismo , Linfócitos/metabolismo , Ratos , Ratos Sprague-Dawley , Sepse/genética , Sepse/terapia , Proteína X Associada a bcl-2/genéticaRESUMO
BACKGROUND AND AIMS: Crohn's disease [CD] is associated with complex microbe-host interactions, involving changes in microbial communities, and gut barrier defects, leading to the translocation of microorganisms to surrounding adipose tissue [AT]. We evaluated the presence of beige AT depots in CD and questioned whether succinate and/or bacterial translocation promotes white-to-beige transition in adipocytes. METHODS: Visceral [VAT] and subcutaneous [SAT] AT biopsies, serum and plasma were obtained from patients with active [n = 21] or inactive [n = 12] CD, and from healthy controls [n = 15]. Adipose-derived stem cells [ASCs] and AT macrophages [ATMs] were isolated from VAT biopsies. RESULTS: Plasma succinate levels were significantly higher in patients with active CD than in controls and were intermediate in those with inactive disease. Plasma succinate correlated with the inflammatory marker high-sensitivity C-reactive protein. Expression of the succinate receptor SUCNR1 was higher in VAT, ASCs and ATMs from the active CD group than from the inactive or control groups. Succinate treatment of ASCs elevated the expression of several beige AT markers from controls and from patients with inactive disease, including uncoupling protein-1 [UCP1]. Notably, beige AT markers were prominent in ASCs from patients with active CD. Secretome profiling revealed that ASCs from patients with active disease secrete beige AT-related proteins, and co-culture assays showed that bacteria also trigger the white-to-beige switch of ASCs from patients with CD. Finally, AT depots from patients with CD exhibited a conversion from white to beige AT together with high UCP1 expression, which was corroborated by in situ thermal imaging analysis. CONCLUSIONS: Succinate and bacteria trigger white-to-beige AT transition in CD. Understanding the role of beige AT in CD might aid in the development of therapeutic or diagnostic interventions.
Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Humanos , Doença de Crohn/metabolismo , Ácido Succínico/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Proteína Desacopladora 1/metabolismoRESUMO
BACKGROUND: The incidence of non-alcoholic fatty liver disease (NAFLD) and its more severe and progressive form, non-alcoholic steatohepatitis (NASH) is increasing worldwide. Gut inflammation seems to concur to the pathogenesis of NASH. No drugs are currently approved for NASH treatment. AIMS: To investigate if inflamed gut directly contributes to the progression of NASH through gut epithelial and vascular barrier impairment and to evaluate the efficacy of dipotassium glycyrrhizate (DPG) to improve the liver disease. METHODS: A NASH model was set up by feeding mice, for 8 and 13 weeks, with high fat diet with high fructose and glucose (HFD-FG) supplemented periodically with dextran sulfate sodium (DSS) in drinking water. A group was also treated with DPG by gavage. Histological, immunohistochemical and molecular analysis were performed. RESULTS: DSS-induced colitis increased steatosis, inflammatory (IL-6, TNFα, NLRP3, MCP-1) as well as fibrotic (TGF-ß, α-SMA) mediator expression in HFD-FG mice. Beneficial effect of DPG was associated with restoration of intestinal epithelial and vascular barriers, evaluated respectively by ZO-1 and PV-1 expression, that are known to limit bacterial translocation. CONCLUSION: Colonic inflammation strongly contributes to the progression of NASH, likely by favouring bacterial translocation. DPG treatment could represent a novel strategy to reduce liver injury.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Inflamação/complicações , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologiaRESUMO
Background: Preterm birth is one of the leading causes of perinatal morbidity and mortality. Gut microbiome dysbiosis is closely related to adverse pregnancy outcomes. However, the role of the gut microbiome in the pathogenesis of preterm birth remains poorly studied. Method: We collected fecal samples from 41 women (cases presenting with threatened preterm labor =19, 11 of which delivered preterm; gestational age-matched no-labor controls, all of which delivered at term = 22) were recruited for the study. We performed 16S rRNA amplicon sequencing to compare the composition of the gut microbiome in threatened preterm labor cases and controls and among women who delivered preterm and at term. By annotating taxonomic biomarkers with the Human Oral Microbiome Database, we observed an increased abundance of potential oral-to-gut bacteria in preterm patients. Results: Patients with preterm birth showed a distinct gut microbiome dysbiosis compared with those who delivered at term. Opportunistic pathogens, particularly Porphyromonas, Streptococcus, Fusobacterium, and Veillonella, were enriched, whereas Coprococcus and Gemmiger were markedly depleted in the preterm group. Most of the enriched bacteria were annotated oral bacteria using the Human Oral Microbiome Database. These potential oral-to-gut bacteria were correlated with clinical parameters that reflected maternal and fetal status. Conclusions: This study suggests that patients who deliver preterm demonstrate altered gut microbiome that may contain higher common oral bacteria.
Assuntos
Microbioma Gastrointestinal , Microbiota , Nascimento Prematuro , Disbiose , Feminino , Humanos , Recém-Nascido , Gravidez , RNA Ribossômico 16S/genéticaRESUMO
BACKGROUND: Sepsis is a life-threatening organ dysfunction with high mortality and morbidity rate and with the disease progression many alterations are observed in different organs. The gastrointestinal tract is often damaged during sepsis and septic shock and main symptoms are related to increased permeability, bacterial translocation and malabsorption. These intestinal alterations can be both cause and effect of sepsis. OBJECTIVE: The aim of this review is to analyze different pathways that lead to intestinal alteration in sepsis and to explore the most common methods for intestinal permeability measurement and, at the same time to evaluate if their use permit to identify patients at high risk of sepsis and eventually to estimate the prognosis. MATERIAL AND METHODS: The peer-reviewed articles analyzed were selected from PubMed databases using the keywords "sepsis" "gut alteration", "bowel permeability", "gut alteration", "bacterial translocation", "gut permeability tests", "gut inflammation". Among the 321 papers identified, 190 articles were selected, after title - abstract examination and removing the duplicates and studies on pediatric population,only 105 articles relating to sepsis and gut alterations were analyzed. RESULTS: Integrity of the intestinal barrier plays a key role in the preventing of bacterial translocation and gut alteration related to sepsis. It is obvious that this dysfunction of the small intestine can have serious consequences and the early identification of patients at risk - to develop malabsorption or already malnourished - is very recommended to increase the survivor rate. Until now, in critical patients, the dosage of citrullinemia is easily applied test in clinical setting, in fact, it is relatively easy to administer and allows to accurately assess the functionality of enterocytes. CONCLUSION: The sepsis can have an important impact on the gastrointestinal function. In addition, the alteration of the permeability can become a source of systemic infection. At the moment, biological damage markers are not specific, but the dosage of LPS, citrulline, lactulose/mannitol test, FABP and fecal calprotectin are becoming an excellent alternative with high specificity and sensitivity.