Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543402

RESUMO

Bamboo scrimber is acknowledged for its eco-friendly potential as a structural material. Its properties are significantly affected by both its density and resin content, but the effect of resin content on the properties under high density is not yet known. In this study, the microstructure, water resistance, mechanical properties, and thermal stability of bamboo scrimbers with varying resin content at a density of 1.30 g/cm3 were investigated. The results unearthed that phenolic resin assisted in the densification of bamboo cells during hot pressing, and a higher resin content could effectively reduce the cracks in the scrimber. The inherent cellulose I structure remained unaffected, but an increase in resin content led to a noticeable decline in crystallinity. Additionally, an increase in resin content pronouncedly improved the water resistance and dimensional stability of bamboo scrimbers. The water absorption and thickness swelling were as low as 9.67% and 7.62%, respectively. The modulus of rupture (MOR) exhibited a marginal increase with the amount of resin, whereas the compressive strength and short-beam shearing strength first increased and then decreased. Their peak strengths were 327.87 MPa at a resin content of 15 wt.%, and 168.85 MPa and 25.96 MPa at 11 wt.%, respectively. However, phenolic resin accelerated the thermal decomposition of bamboo scrimbers, and more resin worsened the thermal stability. These research outcomes offer a dual advantage, providing both a theoretical foundation and concrete data that can inform the production and practical application of high-density bamboo scrimbers.

2.
Polymers (Basel) ; 15(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37896412

RESUMO

Given the increasingly prominent contradiction between the supply of and demand for wood, the abundant resource of bamboo can be a good substitute. Bamboo scrimber can effectively improve the utilization rate of bamboo and has good mechanical properties. However, bamboo scrimber has the problem of poor mildew resistance, and does not meet the requirements for outdoor applications. In this study, in order to further improve the mildew resistance and mechanical properties of bamboo scrimber, alkali treatment was used to remove some nutrients from the bamboo bundles and change the pH of the bamboo scrimber. The results showed that nutrients such as hemicellulose, lignin, starch, and sugar were notably removed from bamboo bundles, and the pH of bamboo was slightly alkaline. The anti-mildew effect was significantly enhanced, which could allow use in outdoor environments, and the mechanical properties and dimensional stability were also improved. Among them, TB6 bamboo scrimber showed comprehensively excellent properties. The infection time in the laboratory mildew test increased from 3 days to more than 30 days, and the infection time in the outdoor mildew resistance test increased from 1 week to more than 8 weeks; the static bending intensity of TB6 increased by 62.6% to 150 MPa, and the bending modulus increased by 71.7% to 14.2 GPa; the change rate of water absorption thickness was reduced to 0.58%. This modification method effectively improved the mildew resistance of bamboo scrimber, while maintaining high mechanical strength, and provides a new method for the outdoor application of bamboo scrimber.

3.
Materials (Basel) ; 16(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37445195

RESUMO

In the past decade, bamboo scrimber has developed rapidly in the field of building materials due to its excellent mechanical properties, such as high toughness and high tensile strength. However, when the applied stress exceeds the ultimate strength limit of bamboo scrimber, cracks occur, which affects the performance of bamboo scrimber in structural applications. Due to the propensity of cracks to propagate, it reduces the load-bearing capacity of the bamboo scrimber material. Therefore, research on the fracture toughness of bamboo scrimber contributes to determining the material's load-bearing capacity and failure mechanisms, enabling its widespread application in engineering failure analysis. The fracture toughness of bamboo scrimber was studied via the single-edge notched beam (SENB) experiment and compact compression (CC) method. Nine groups of longitudinal and transverse samples were selected for experimental investigation. The fracture toughness of longitudinal bamboo scrimber under tensile and compressive loadings was 3.59 MPa·m1/2 and 2.39 MPa·m1/2, respectively. In addition, the fracture toughness of transverse bamboo scrimber under tensile and compressive conditions was 0.38 MPa·m1/2 and 1.79 MPa·m1/2, respectively. The results show that, for this material, there was a significant distinction between longitudinal and transverse. Subsequently, three-point bending tests and simulations were studied. The results show that the failure mode and the force-displacement curve of the numerical simulation were highly consistent compared with the experimental results. It could verify the correctness of the test parameters. Finally, the flexural strength of bamboo scrimber was calculated to be as high as 143.16 MPa. This paper provides data accumulation for the numerical simulation of bamboo scrimber, which can further promote the development of bamboo scrimber parameters in all aspects of the application.

4.
Molecules ; 28(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37299018

RESUMO

Bamboo scrimber is widely used in interior decoration, architecture, and many other fields. However, it has caused huge security risks due to its inherent flammability and easy-to-produce toxic volatiles after combustion. In this work, the bamboo scrimber with superior flame retardant and smoke suppression properties was produced via the coupling of phosphocalcium-aluminum hydrotalcite (PCaAl-LDHs) with bamboo bundles. The results demonstrated that the flame-retardant bamboo scrimber (FRBS) heat release rate (HRR) and total heat release (THR) were, respectively, reduced by 34.46% and 15.86% compared with that of untreated bamboo scrimber. At the same time, the unique multi-layer structure of PCaAl-LDHs effectively slowed down the release rate of flue gas by extending its escape path. Cone calorimetry showed that the total smoke emissions (TSR) and specific extinction area (SEA) of FRBS were, respectively, reduced by 65.97% and 85.96% when the concentration of the flame retardant was 2%, which greatly developed the fire safety of the bamboo scrimber. This method not only improves the fire safety of bamboo scrimber but can also be expected to broaden its use scenarios.


Assuntos
Retardadores de Chama , Nanoestruturas , Alumínio , Calorimetria , Fumaça , Sasa
5.
Molecules ; 28(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37241834

RESUMO

To improve the flame retardancy of bamboo scrimber, flame-retardant CaAl-PO4-LDHs were synthesized via the coprecipitation method using PO43- as the anion of an intercalated calcium-aluminum hydrotalcite in this work. The fine CaAl-PO4-LDHs were characterized via X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), cold field scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and thermogravimetry (TG). Different concentrations (1% and 2%) of CaAl-PO4-LDHs were used as flame retardants for the bamboo scrimber, and the flame retardancy of the bamboo scrimber was characterized via cone calorimetry. The results showed that CaAl-PO4-LDHs with excellent structures were successfully synthesized via the coprecipitation method in 6 h and at 120 °C. Compared with the bamboo scrimber without the flame retardant treatment, the peak heat release rate (HRR) of the bamboo scrimber treated with 1% and 2% concentrations of flame-retardant CaAl-PO4-LDHs decreased by 16.62% and 34.46%, the time taken to reach the exothermic peak was delayed by 103 s and 204 s and the Time to Ignition (TTI) was increased by 30% and 40%, respectively. Furthermore, the residual carbon of the bamboo scrimber did not change significantly, increasing by 0.8% and 2.08%, respectively. CO production decreased by 18.87% and 26.42%, respectively, and CO2 production decreased by 11.11% and 14.46%, respectively. The combined results show that the CaAl-PO4-LDHs synthesized in this work significantly improved the flame retardancy of bamboo scrimber. This work exhibited the great potential of the CaAl-PO4-LDHs, which were successfully synthesized via the coprecipitation method and applied as a flame retardant to improve the fire safety of bamboo scrimber.

6.
Materials (Basel) ; 15(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36363109

RESUMO

Controlling the variability in mat structure and properties in bamboo scrimber (BS) is key to producing the product for structural applications, and wide strip scrimber (WBS) is an effective approach. In this study, the effects of scrimmed bamboo bundle morphology and product density on the properties of WBS were investigated. WBS panels were manufactured and tested using wide (200 to 250 mm) bamboo strips with different fiberization intensity. Maximum strength properties (flexural, compressive, and shear strength), and lowest thickness swelling and water absorption were achieved with three or four passes due to the higher resin absorption by strips. For balanced product cost and performance, we recommend 1-2 fiberization passes and a panel density of 0.9-1.0 g/cm3. Panel mechanical properties were compared with other common bamboo composites. Bamboo scrimber products were highly variable in properties due to differing manufacturing processes, element treatments, and suboptimal mat structure. Products including laminated bamboo lumber and flattened bamboo made from nonfiberized elements show markedly different relationships between strength and elastic properties mostly due to inadequate bonding between the laminae, which causes premature bond-line failure. This study helped improve the understanding of the structure-property relationship of engineered bamboo products while providing insights into process optimization.

7.
Polymers (Basel) ; 14(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35567025

RESUMO

As a new type of green environmental protection material for outdoor use, the water resistance of bamboo scrimber composite (BSC) is crucial-the primary reason for a decrease in water resistance being bonding interface failure. From a bonding interface structure perspective, the influence mechanism of the resin content and density on the water resistance of BSCs remains unknown. Therefore, in this study, BSCs were prepared using Moso bamboo and phenol-formaldehyde resin, and the changes in the macroscopic and microscopic bonding interfaces before and after 28-h water-resistance tests were observed and analyzed. The results showed that the water resistance of the BSC increased with increasing resin content, with higher thickness swelling rates (TSRs) observed at higher densities. Obvious cracks were found at the macroscopic interface after 28-h tests, with higher resin contents leading to fewer and smaller cracks. With increasing density, the longitudinal fissures due to defibering process decreased, having an effect on width swelling rates (WSRs). Furthermore, porosity measurements revealed changes in the microscopic bonding interface; the difference in porosity before and after testing (D-value) showed the same trend as water resistance. Generally, we conclude that the macroscopic and microscopic bonding interface structures are closely related to BSC water resistance.

8.
Polymers (Basel) ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616478

RESUMO

As a modern bamboo composite with good mechanical properties, bamboo scrimber (BS) has achieved prominence in the sustainable architecture field. When used as a structural material, it is inevitably under continual tension perpendicular to the grain, therefore its mechanical response under long-term loading is significant for structural design. In this study, tensile tests were conducted on BS under short-term and long-term loads perpendicular to the grain. The duration of load (DOL) effect on BS perpendicular to grain and its creep effect were analyzed. Compared with BS parallel to the grain, the DOL effect on BS perpendicular to the grain was less severe, and the capacity for creep resistance was weaker. The threshold stress ratio and relative creep strain of BS perpendicular to the grain were 0.40 and 0.87, respectively. It was found that the DOL models and the viscoelastic model accurately predicted the DOL factor and creep strain. This study provides a scientific reference for the safe lifetime service of BS in practical engineering.

9.
Polymers (Basel) ; 15(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36616563

RESUMO

With natural texture and high performance, bamboo scrimber is one of the artificial lignocellulosic composites widely used in construction, furniture and other structural applications. However, it is vulnerable to the actions of water, ultraviolet radiation and fungus, which affect its durability, especially in the open. Here, bamboo was treated with superheated steam in an attempt to improve the durability of bamboo scrimbers. The chemical composition, mechanical properties, dimensional stability, aging resistance, decay resistance and anti-mildew properties were investigated at different temperatures (160~200 °C). After superheated steam treatment, the relative contents of holocellulose and α-cellulose in bamboo decreased. The bending strength and short-beam shearing strength slightly decreased as the temperature was raised while the modulus was essentially retained. The aging resistance in terms of thickness swelling rate (≤9.38%) was substantially improved. The decay resistance reached to the level of Grade I and can be dramatically enhanced by elevating temperature. The anti-mildew properties were also improved. To take together, superheated steam treatment remarkably improves the resistance of bamboo scrimbers to water, ultraviolet radiation, rot fungi and mildew with some concomitant reduction in mechanical properties. The results will permit outdoor construction using bamboo scrimbers more resistant to environmental damage.

10.
Materials (Basel) ; 14(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806430

RESUMO

Bamboo fiber composite (BFC) is a unidirectional and continuous bamboo fiber composite manufactured by consolidation and gluing of flattened, partially separated bamboo culm strips into thick and dense panels. The composite mechanical properties are primarily influenced by panel density, its variation and uniformity. This paper characterized the horizontal density distribution (HDD) within BFC panels and its controlling factors. It revealed that HDD follows a normal distribution, with its standard deviation (SD) strongly affected by sampling specimen size, panel thickness and panel locations. SD was lowest in the thickest (40 mm) panel and largest-size (150 × 150-mm2) specimens. There was also a systematic variation along the length of the BFC due to the tapering effect of bamboo culm thickness. Density was higher along panel edges due to restraint from the mold edges during hot pressing. The manual BFC mat forming process is presented and found to effectively minimize the density variation compared to machine-formed wood composites. This study provides a basic understanding of and a quality control guide to the formation uniformity of BFC products.

11.
Molecules ; 25(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007924

RESUMO

Bamboo scrimber is a new type of bamboo-based panel that is prone to be affected by biological and service environments under outdoor conditions. In this paper, the physical and mechanical performance and the microchemical and surface properties of untreated and hot-oil-treated bamboo scrimber were analyzed to illustrate the processing mechanism of scrimber. Methyl silicone oil treatment was carried out at 120, 140, and 160 °C for 2, 4, and 6 h. The density, mechanical properties, air-dried moisture content, surface morphology, chemical structure, swelling properties, color, and contact angle of the bamboo scrimber were analyzed to evaluate the treatment effectiveness. Observation of the environmental-scanning electron microscope indicated that the glue layer of the bamboo scrimber was not significantly damaged after hot oil treatment. At low temperatures, the mechanical properties did not change significantly. Infrared-spectrum analysis showed a significant decrease in mechanical properties at higher temperatures and longer treatment time for the degradation of hemicellulose. The contact angle test and swelling properties test showed that the hot oil treatment improved the dimensional stability and reduced the wettability on the surface of the bamboo scrimber. The above analysis results show that the treatment at 140 °C for 2 h is most effective.


Assuntos
Temperatura Alta , Óleos/farmacologia , Sasa/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Molhabilidade
12.
Materials (Basel) ; 9(6)2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28773565

RESUMO

The objective of this study was to investigate the compressive strength parallel to the grain of bamboo scrimber during and after exposure to various temperatures, in a range from 20 to 225 °C. These data were used to provide a basis for the evaluation of the fire performance of bamboo structures. A total of 152 specimens, assembled as group "during-fire" and "post-fire", were tested during and after exposure to high temperatures. The experimental results indicated that there were significant differences in compressive properties between the "during-fire" and "post-fire" groups. At one temperature level, the compressive strength and modulus of elasticity of the "post-fire" group were significantly higher than those properties of the "during fire" group, but the ductility coefficient was reversed. FTIR analysis results showed that 175 °C was a key turning point, at which thermal decomposition occurred in the cellulose of the bamboo and phenolic resin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA