Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.212
Filtrar
1.
J Colloid Interface Sci ; 677(Pt B): 101-110, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39137559

RESUMO

Sodium-selenium (Na-Se) batteries are promising energy storage systems with high energy density, high safety, and low cost. However, the huge volume change of selenium, the dissolution shuttle of polyselenides, and low selenium loading need to be solved. Herein, Cu nanoparticles decorated MXene nanosheets composite (MXene/Cu) are synthesized by etching Ti3AlC2 using a molten salt etching strategy. The Se-loaded MXene/Cu (Se@MXene/Cu) electrode delivers superior electrochemical performance even with a high Se loading of ∼74.3 wt%, owing to the synergistic effect of the two-dimensional (2D) confined structure and catalytic role of the unique MXene/Cu host. Specifically, the obtained electrode provides a reversible capacity of 587.3 mAh/g at 0.2 A/g, a discharge capacity as high as 511.3 mAh/g at a high rate of 50 A/g, and still maintains a capacity of 471.9 mAh/g even after 5000 cycles based on the mass of Se@MXene/Cu. With such excellent electrochemical kinetic properties, this study highlights the importance of designing various MXene-based composites with synergistic effects of 2D confined structure and Cu catalytic center for the development of high-performance alkali metal-chalcogen battery systems.

2.
J Colloid Interface Sci ; 677(Pt B): 91-100, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39137566

RESUMO

The further commercialization of layer-structured Ni-rich LiNi0.83Co0.11Mn0.06O2 (NCM83) cathode for high-energy lithium-ion batteries (LIBs) has been challenged by severe capacity decay and thermal instability owing to the microcracks and harmful phase transitions. Herein, Ti4+-doped NCM83 cathode materials are rationally designed via a simple and low-cost in-situ modification method to improve the crystal structure and electrode-electrolyte interface stability by inhibiting irreversible polarizations and harmful phase transitions of the NCM83 cathode materials due to Ti4+-doped forms stronger metal-O bonds and a stable bulk structural. In addition, the optimal doping amount of the composite cathode material is also determined through the results of physical characterization and electrochemical performance testing. The optimized Ti4+-doped NCM83 cathode material presents wider Li+ ions diffusion channels (c = 14.1687 Å), lower Li+/Ni2+ mixing degree (2.68 %), and compact bulk structure. The cell assembled with the optimized Ti4+-doped NCM83 cathode material exhibits remarkable capacity retention ratio of 95.4 % after 100cycles at 2.0C and room temperature, and outstanding reversible discharge specific capacity of 148.2 mAh g-1 at 5.0C. Even under elevated temperature of 60 °C, it delivers excellent capacity retention ratio of 92.2 % after 100cycles at 2.0C, which is significantly superior to the 47.9 % of the unmodified cathode material. Thus, the in-situ Ti4+-doped strategy presents superior advantages in enhancing the structural stability of Ni-rich cathode materials for LIBs.

3.
J Colloid Interface Sci ; 677(Pt B): 181-193, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39142159

RESUMO

Lithium-sulfur (Li-S) batteries have garnered extensive research interest as one of the most promising energy storage devices due to their ultra-high theoretical energy density. However, the sluggish reaction kinetics, abominable shuttling effect and inferior cycling stability severely restrict its practical application. Herein, a multifunctional CoP/Co@NC/CNT heterostructure host material was elaborately designed and synthesized by integrating CoP/Co heterojunction, N-doped carbon hollow polyhedrons (NC) and carbon nanotubes (CNTs). Specifically, the CoP/Co heterojunction can reconfigure the local electronic structure, resulting in a synergistic effect that enhances adsorption capacity and catalytic activity compared to CoP and Co alone. Furthermore, the CNTs-grafted NC not only provides multi-dimensional pathways for rapid electron transport and ion diffusion, but also physically restricts the diffusion of polysulfides during charge-discharge processes. Owing to these advantages, the battery assembled with the CoP/Co@NC/CNT/S cathode yields an impressive discharge specific capacity of 1479.9 mAh g-1 at 0.1C, and excellent capacity retention of 793.7 mAh g-1 over 500 cycles at 2C (∼85.5 % of initial capacity). The rational integration of multifunctional heterostructures could provide an effective strategy for designing high-efficiency nanocomposite electrocatalysts to promote sulfur redox kinetics in Li-S batteries.

4.
J Colloid Interface Sci ; 677(Pt B): 284-292, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39146816

RESUMO

The shuttle effect of aluminum polysulfides (AlPSs) have been a source of concern for studying Al/S batteries. Due to the weak adsorption of CS composites, research on cathode materials for Al/S batteries has been delayed. As it is generally known that Al2S3 decomposition demands a large Gibbs free energy, this work has tried to reduce the Al2S3 decomposition potential energy. Herein, the Ni/Co bimetallic selenide reduces the energy barrier conversion and mitigates the polarization effects, while morphology control enables the storage and anchoring of S, alleviating the shuttle effect. Additionally, the intermediate products serve as single-atom catalysts, increasing the active sites, synergistically enhancing the ion diffusion kinetics. DFT calculations verify that NiCo2Se4 has a moderate Gibbs free energy change during the rate-limiting step of S reduction and the most robust adsorption energy to Al2S3. NiCo2Se4@CS2/Al has a remaining capacity of 135 mAh/g after 450 cycles (at 200 mA g-1), pioneering novel ideas for the development of Al/S batteries.

5.
J Colloid Interface Sci ; 677(Pt B): 312-322, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39151224

RESUMO

Heteroatom-doped carbon has been widely investigated as anode materials for sodium-ion batteries (SIBs). However, simplifying the preparation process and precisely controlling their microstructure to achieve excellent Na+ storage performance remain significant challenges. Therefore, in this study, high-performance N, P co-doped Na+ storage carbon anode electrode materials were prepared by one-step carbonization using N, P-rich Eichhornia crassipes (EC) as raw materials and systematically tested for their Na+ storage performance. The doping levels of N and P atoms as well as the spatial structure of the carbon material were adjusted by changing the carbonization temperature during the pyrolysis process. Among them, the anode material corresponding to 1300 °C (EC-PN1300) showed an excellent Na+ storage capacity of 336 ± 4 mAh g-1 (50 mA g-1) and excellent cycling stability (99.8 % retention after 2000 cycles). In addition, the Na+ storage mechanism of EC-PN1300 was systematically analyzed using galvanostatic intermittent titration (GITT), ex-situ XPS and in-situ Raman spectroscopy, providing accurate research directions for developing carbon anode electrode materials with superior electrochemical performance. This study not only provides some insights into the preparation of carbon anode materials in alkali metal batteries and the development of carbon materials in other fields, but also realizes the interaction between environmental protection and new energy development.

6.
J Colloid Interface Sci ; 677(Pt B): 462-471, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39154439

RESUMO

Aqueous Zn-ion batteries (AZIBs) have attracted widespread attention due to their intrinsic safety, cost-effectiveness. However, active H2O in the solvated ions [Zn(H2O)6]2+ continuously migrate to the Zn surface to trigger hydrogen evolution reaction (HER) and accelerate Zn corrosion. Herein, Zn dendrites and the related by-products have been successfully inhibited by using trace amounts of Nitrilotriacetic acid (NTA). Theoretical research indicates that two carboxyl groups of NTA molecule strongly anchored on the Zn surface and exposed another carboxyl group outside. Due to the violent interaction of carboxyl groups of NTA with H2O, the de-solvation energy barrier of solvated Zn2+ ([Zn(H2O)6]2+) on the Zn surface was obviously decreased, inhibit the active water splitting. Meanwhile, the preferential adsorption of NTA on the Zn surface increases the thickness of electric double layer EDL and provides a buffer layer to hinder the dendrite growth. Using 0.04 M NTA as additives in 2.0 M ZnSO4 electrolyte, the cycling lifespan of both Zn||Zn symmetric and Zn||MnO2 full cells is markedly prolonged. This study provides certain perspectives for trace amounts of electrolyte additives to satisfy the demand of long-cycle life AZIBs.

7.
J Colloid Interface Sci ; 677(Pt B): 608-616, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39154452

RESUMO

Aqueous zinc-ion batteries (AZIBs) are expected to be a promising large-scale energy storage system owing to their intrinsic safety and low cost. Nevertheless, the development of AZIBs is still plagued by the design and fabrication of advanced cathode materials. Herein, the amorphous vanadium pentoxide and hollow porous carbon spheres (AVO-HPCS) hybrid is elaborately designed as AZIBs cathode material by integrating vacuum drying and annealing strategy. Amorphous vanadium pentoxide provides abundant active sites and isotropic ion diffusion channels. Meanwhile, the hollow porous carbon sphere not only provides a stable conductive network, but also enhances the stability during charging/discharging process. Consequently, the AVO-HPCS exhibits a capacity of 474 mAh/g at 0.5 A/g and long-term cycle stability. Moreover, the corresponding reversible insertion/extraction mechanism is elucidated by ex-situ X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. Furthermore, the flexible pouch battery with AVO-HPCS cathode shows high comprehensive performance. Hence, this work provides insights into the development of advanced amorphous cathode materials for AZIBs.

8.
J Colloid Interface Sci ; 677(Pt B): 551-559, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39154447

RESUMO

Attributing to the advantages of intrinsic safety, high energy density, and good omnidirectional flexibility, fiber-shaped aqueous zinc ions batteries (FAZIBs), serving as energy supply devices, have multitude applications in flexible and wearable electronic devices. However, the detachment of active materials caused by bending stress generated during flexing process limits their practical application severely. To address the above issue, an effective integrated strategy employing microcracked activated cobalt hydroxide [A-Co(OH)2] cathode with protective coating of poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT:PSS) was proposed in this work to enhance the cyclic and bending performances of FAZIBs. The microcracked A-Co(OH)2 cathode relieves stress concentration under bending conditions, while the PEDOT:PSS coating is responsible to maintain the structural integrity and prevents the detachment of A-Co(OH)2. The FAZIBs based on a gel electrolyte achieved a high energy density (173.5 Wh·kg-1) at a power density 90 W·kg-1 and a bending durability (94.4 % capacity retention after 500 cycles) as a consequence of the synergistic effect of microcracked A-Co(OH)2 cathode and the PEDOT:PSS coating. This work will offer a new approach for devising high-performance FAZIBs and promote the development of highly flexible and stable fiber-shaped batteries.

9.
J Colloid Interface Sci ; 677(Pt B): 637-646, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39159518

RESUMO

The growing demand for clean energy has heightened interest in sodium-ion batteries (SIBs) as promising candidates for large-scale energy storage. However, the sluggish reaction kinetics and significant volumetric changes in anode materials present challenges to the electrochemical performance of SIBs. This work introduces a hierarchical structure where WS2 is confined between an inner hard carbon core and an outer nitrogen-doped carbon shell, forming HC@WS2@NCs core-shell structures as anodes for SIBs. The inner hard carbon core and outer nitrogen-doped carbon shell anchor WS2, enhancing its structural integrity. The highly conductive carbon materials accelerate electron transport during charge/discharge, while the rationally constructed interfaces between carbon and WS2 regulate the interfacial energy barrier and electric field distribution, improving ion transport. This synergistic interaction results in superior electrochemical performance: the HC@WS2@NCs anode delivers a high capacity of 370 mAh g-1 at 0.2 A/g after 200 cycles and retains261 mAh g-1 at 2 A/g after 2000 cycles. In a full battery with a Na3V2(PO4)3 cathode, the Na3V2(PO4)3//HC@WS2@NC full-cell achieves an impressive initial capacity of 220 mAh g-1 at 1 A/g. This work provides a strategic approach for the systematic development of WS2-based anode materials for SIBs.

10.
J Colloid Interface Sci ; 677(Pt B): 719-728, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39167963

RESUMO

Hard carbons derived from pitch are considered a competitive low-cost anode for sodium-ion batteries. However, the preparation of pitch-based hard carbon (PHC) requires the aid of a pre-oxidation strategy, which introduces unnecessary defects and oxygen elements, which leads to low initial Coulombic efficiency (ICE) and poor cycling stability. Herein, we demonstrate a new surface engineering strategy by grafting chemically active glucose molecules on the PHC surface via esterification reactions, which can achieve low-cost nano-scaled carbon coating. Thin glucose coating can be carbonized at a lower temperature, which results in a more closed pore structure and fewer functional groups. The as prepared PHC exhibits a high reversible capacity of 328.5 mAh/g with a high ICE of 92.08 % at 0.02 A/g. It is noteworthy that the PHC can be adapted to a variety of cathode materials for full-cell assembling without pre-sodiation, which maintains the characteristics of high capacity and excellent cycling stability. The performance of resin-based hard carbon coated with a similar method was also improved, demonstrating the universality of the technique.

11.
J Colloid Interface Sci ; 677(Pt A): 35-44, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39079214

RESUMO

Amorphous carbon materials with sophisticated morphologies, variable carbon layer structures, abundant defects, and tunable porosities are favorable as anodes for potassium-ion batteries (PIBs). Synthesizing amorphous carbon materials typically involves the pyrolysis of carbonaceous precursors. Nonetheless, there is still a lack of studies focused on achieving multifaceted structural optimizations of amorphous carbon through precursor formulation. Herein, nitrogen-doped amorphous carbon nanotubes (NACNTs) are derived from a novel composite precursor of cobalt-based metal-organic framework (CMOF) and graphitic carbon nitride (g-CN). The addition of g-CN in the precursor optimizes the structure of amorphous carbon such as morphology, interlayer spacing, nitrogen doping, and porosity. As a result, NACNTs demonstrate significantly improved electrochemical performance. The specific capacities of NACNTs after cycling at current densities of 100 mA/g and 1000 mA/g increased by 194 % and 230 %, reaching 346.6 mAh/g and 211.8 mAh/g, respectively. Furthermore, the NACNTs anode is matched with an organic cathode for full-cell evaluation. The full-cell attains a high specific capacity of 106 mAh/gcathode at a current density of 100 mA/g, retaining 90.5 % of the specific capacity of the cathode half-cell. This study provides a valuable reference for multifaceted structural optimization of amorphous carbon to improve potassium-ion storage capability.

12.
J Colloid Interface Sci ; 677(Pt A): 130-139, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39083890

RESUMO

Traditional trial-error approach severely limits and restricts rapid development of high-performance anode and electrolytes materials, searching huge parameters space of various anode-solid electrolyte interfaces in an effective and efficient way is the key issue. Here, a novel computational strategy combining machine learning and first-principles is proposed to achieve efficient high-throughput screening of oxides and sulfides electrolytes for highly stable silicon oxycarbide all-solid-state batteries. First-principles calculations demonstrate significant compact of material type and elemental doping on interfacial compatibility between silicon oxycarbide and various electrolytes. By proposing several novel descriptors including interfacial adhesion and formation energies of frozen system with low computation cost, the amounts of demanded trainings data are significantly reduced. Gradient-boosted regression tree model shows low mean absolute errors of 0.09 and high R2 value of 0.99 for the prediction of interface formation energy, demonstrating ultrahigh accuracy and reliability of the algorithm. The present work discovers a series of uninvestigated stable anode-solid electrolytes interfacial couples for further experimental preparation.

13.
J Colloid Interface Sci ; 677(Pt A): 307-313, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39094491

RESUMO

High entropy material (HEM) has emerged as an appealing material platform for various applications, and specifically, the electrochemical performances of HEM could be further improved through self-assembled structure design. However, it remains a big challenge to construct such high-entropy self-assemblies primarily due to the compositional complexity. Herein, we propose a bottom-up directional freezing route to self-assemble high-entropy hydrosols into porous nanosheets. Taking Prussian blue analogue (PBA) as an example, the simultaneous coordination-substitution reactions yield stable high-entropy PBA hydrosols. During subsequent directional freezing process, the anisotropic growth of ice crystals could guide the two-dimensional confined assembly of colloidal nanoparticles, resulting in high-entropy PBA nanosheets (HE-PBA NSs). Thanks to the high-entropy and self-assembled structure design, the HE-PBA NSs manifests markedly enhanced sodium storage kinetics and performances in comparison with medium/low entropy nanosheets and high entropy nanoparticles.

14.
J Colloid Interface Sci ; 677(Pt A): 645-654, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39116562

RESUMO

Aqueous zinc-ion batteries (AZIBs) have recently been paid great attention due to their robust safety features, high theoretical capacity, and eco-friendliness, yet their practical application is hindered by the serious dendrite formation and side reactions of Zn metal anode during cycling. Herein, a low-cost small molecule, nicotinamide (NIC), is proposed as an electrolyte additive to effectively regulate the Zn interface, achieving a highly reversible and stable zinc anode without dendrites. NIC molecules not only modify the Zn2+ solvation structure but also preferentially adsorb on the Zn surface than solvated H2O to protect the Zn anode and provide numerous nucleation sites for Zn2+ to homogenize Zn deposition. Consequently, the addition of 1 wt% NIC enables Zn||Zn symmetric cells an ultra-long lifespan of over 9700 h at 1 mA cm-2, which expands nearly 808 times compared to that without NIC. The advantages of NIC additives are further demonstrated in NaVO||Zn full cells, which exhibit exceptional capacity retention of 90.3 % after 1000 cycles with a high Coulombic efficiency of 99.9 % at 1 A/g, while the cell operates for only 42 cycles without NIC additive. This strategy presents a promising approach to solving the anode problem, fostering advancements in practical AZIBs.

15.
J Colloid Interface Sci ; 677(Pt A): 790-799, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121663

RESUMO

The increasing demand for high-performance electrode materials in lithium-ion batteries has driven significant attention towards Nb2O5 due to its high working voltage, large theoretical capacity, environmental friendliness, and cost-effectiveness. However, inherent drawbacks such as poor electrical conductivity and sluggish electrochemical reaction kinetics have hindered its lithium storage performance. In this study, we introduced KCa2Nb3O10 into Nb2O5 to form a heterojunction, creating a built-in electric field to enhance the migration and diffusion of Li+, effectively promoting electrochemical reaction kinetics. Under the regulation of the built-in electric field, the charge transfer resistance of the KCa2Nb3O10/Nb2O5 anode decreased by 3.4 times compared to pure Nb2O5, and the Li+ diffusion coefficient improved by two orders of magnitude. Specifically, the KCa2Nb3O10/Nb2O5 anode exhibited a high capacity of 276 mAh g-1 under 1 C, retaining a capacity of 128 mAh g-1 even at 100 C. After 3000 cycles at 25 C, the capacity degradation was only 0.012% per cycle. Through combined theoretical calculations and experimental validation, it was found that the built-in electric field induced by the heterojunction interface contributed to an asymmetric charge distribution, thereby improving the rates of charge and ion migration within the electrode, ultimately enhancing the electrochemical performance of the electrode material. This study provides an effective approach for the rational design of high-performance electrode materials.

16.
J Colloid Interface Sci ; 677(Pt A): 771-780, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121661

RESUMO

Oxygen reduction reaction (ORR) serves as the foundation for various electrochemical energy storage devices. Fe/NC catalysts are expected to replace commercial Pt/C as oxygen electrode catalysts based on the structural tunability at the atomic level, abundant iron ore reserves and excellent activity. Nevertheless, the lack of durability and low active site density impede its advancement. In this work, a durable catalyst, CuFe/NC, for ORR was prepared by modulating the interfacial composition and electronic structure. The introduction of Cu nanoclusters partially eliminates the Fenton effect from Fe and optimizes the electron structure of FeNx, thereby effectively enhancing the long-term durability and activity. The prepared CuFe/NC exhibits a half-wave potential (E1/2) of 0.90 V and superior stability with a decrease in E1/2 of only 20 mV after 10,000 cycles. The assembled alkaline Zinc-Air batteries (ZABs) with CuFe/NC exhibit an open-circuit potential of 1.458 V. At a current density of 5 mA cm-2, the batteries are capable of operation for 600 h with a stable polarization. This CuFe/NC may promote the practical application of novel and renewable electrochemical energy storage devices.

17.
J Colloid Interface Sci ; 677(Pt A): 812-819, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121665

RESUMO

Aqueous zinc-ion batteries (AZIBs) have become a research hotspot, but the inevitable zinc dendrites and parasitic reactions in the zinc anode seriously hinder their further development. In this study, three covalent triazine frameworks (DCPY-CTF, CTF-1 and FCTF) have been synthesized and used as artificial protective coatings, in which the fluorinated triazine framework (FCTF) increases the zinc-philic site, thus better promoting dendritic free zinc deposition and inhibiting hydrogen evolution reactions. Excitingly, both experimental results and theoretical calculations indicate that the FCTF interface adjusts the deposition of Zn2+ along the (002) plane, effectively alleviating the formation of zinc dendrites. As expected, Zn@FCTF symmetric cells exhibit cycling stability of over 4000 h (0.25 mA cm-2), meanwhile Zn@FCTF//NHVO full cells provide a high specific capacity of 280 mAh/g at 1.0 A/g, which are superior to those of bare Zn anode. This work provides new insights for suppressing hydrogen evolution and promoting dendrite-free zinc deposition to construct highly stable and reversible AZIBs.

18.
J Colloid Interface Sci ; 677(Pt A): 800-811, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121664

RESUMO

Zinc-air batteries, as one of the emerging areas of interest in the quest for sustainable energy solutions, are hampered by the intrinsically sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and still suffer from the issues of low energy density. Herein, we report a MOF-on-MOF-derived electrocatalyst, FeCo@NC-II, designed to efficiently catalyze both ORR (Ehalf = 0.907 V) and OER (Ej=10 = 1.551 V) within alkaline environments, surpassing esteemed noble metal benchmarks (Pt/C and RuO2). Systematically characterizations and density functional theory (DFT) calculations reveal that the synergistic effect of iron and cobalt bimetallic and the optimized distribution of nitrogen configuration improved the charge distribution of the catalysts, which in turn optimized the adsorption / desorption of oxygenated intermediates accelerating the reaction kinetics. While the unique leaf-like core-shell morphology and excellent pore structure of the FeCo@NC-II catalyst caused the improvement of mass transfer efficiency, electrical conductivity and stability. The core and shell of the precursor constructed through the MOF-on-MOF strategy achieved the effect of 1 + 1 > 2 in mutual cooperation. Further application to zinc-air batteries (ZABs) yielded remarkable power density (212.4 mW/cm2), long cycle (more than 150 h) stability and superior energy density (∼1060 Wh/kg Zn). This work provides a methodology and an idea for the design, synthesis and optimization of advanced bifunctional electrocatalysts.

19.
J Colloid Interface Sci ; 677(Pt A): 842-852, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39126802

RESUMO

The high theoretical specific energy and environmental friendliness of zinc-air batteries (ZABs) have garnered significant attention. However, the practical application of ZABs requires overcoming the sluggish kinetics associated with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, 3D self-supported nitrogen-doped carbon nanotubes (N-CNTs) arrays encapsulated by CoNi nanoparticles on carbon fiber cloth (CoNi@N-CNTs/CFC) are synthesized as bifunctional catalysts for OER and ORR. The 3D interconnected N-CNTs arrays not only improve the electrical conductivity, the permeation and gas escape capabilities of the electrode, but also enhance the corrosion resistance of CoNi metals. DFT calculations reveal that the co-existence of Co and Ni synergistically reduces the energy barrier for OOH conversion to OH, thereby optimizing the Gibbs free energy of the catalysts. Additionally, analysis of the change in energy barrier during the rate-determining step suggests that the primary catalytic active center is Ni site for OER. As a result, CoNi@N-CNTs/CFC exhibits superior catalytic activity with an overpotential of 240 mV at 10 mA cm-2 toward OER, and the onset potential of 0.92 V for ORR. Moreover, utilization of CoNi@N-CNTs/CFC in liquid and solid-state ZABs exhibited exceptional stability, manifesting a consistent cycling operation lasting for 100 and 15 h, respectively.

20.
J Colloid Interface Sci ; 677(Pt A): 885-894, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39126807

RESUMO

Zinc metal anodes encounter significant challenges, including dendrite growth, hydrogen evolution, and corrosion, all of which impede the rate capability and longevity of aqueous zinc-ion batteries (AZIBs). To effectively tackle these issues, we introduced Tween-80 into the traditional ZnSO4 electrolyte as an additive. Tween-80 possesses electronegative oxygen atoms that enable it to adsorb onto the zinc (Zn) anode surface, facilitating the directional deposition of Zn metal along the (002) orientation. The hydroxyl and ether groups within Tween-80 can displace some of the coordinated water molecules in the Zn2+ inner solvation shell. This disruption of the hydrogen bond network regulates the solvation structure of Zn2+ ions and suppresses the possibility of hydrogen evolution. Moreover, the long hydrocarbon chain present in Tween-80 exhibits excellent hydrophobic properties, aiding in the resistance against corrosion of the Zn anode by water molecules and reducing hydrogen evolution. Consequently, a symmetric cell equipped with the Tween-80 additive can cycle stably for over 4000 h at 1 mA cm-2 and 1 mA h cm-2. When paired with the V2O5 cathode, the full cell demonstrates a high-capacity retention rate exceeding 80 % over 1000 cycles at a current density of 2 A g-1. This study underscores the advantages of utilizing non-ionic surfactants for achieving high-performance aqueous zinc-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA