Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med ; 124: 103424, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002424

RESUMO

The dosimetric output of a 6FFF beam, produced from a Varian TrueBeam linac exhibited an unexpected downward trend over time that was contrary to well-established expectations. To elucidate the cause of this uncharacteristic trend, a review of the linac's quality control results over its lifetime was performed, including, constancy checks of the dosimetric output, beam energy, flatness and symmetry, and percentage depth dose characteristics. These results were supplemented with a comprehensive series of measurements including flatness and symmetry measurements with a 1D-diode array, high-resolution measurements of the photon beam's build-up region with a parallel-plate chamber and measurement of the beam's output as a function of the x-ray target position. The review of the linac's QC results and supplemental tests identified no deviations in the linac's performance from its commissioning and baseline measurements. However, the 6FFF beam output exhibited a significant dependence on the target location relative to its default position, increasing by 5.43 % with a 0.5 mm target translation, indicating that target degradation was the cause of the atypical output trend. The change in output behaviour was believed to be the result of primary electrons escaping the degraded target and interacting with the linac's monitor chamber. Replacement of the x-ray target caused the 6FFF output to realign with expected trends. Target degradation was uncovered due to a robust quality control trending database and awareness of typical output behaviour. These results demonstrate the importance of data trending to identify component failure and provide centres with knowledge to recognise this potential fault.


Assuntos
Aceleradores de Partículas , Controle de Qualidade , Radiometria/instrumentação , Fótons
2.
J Appl Clin Med Phys ; 24(3): e13857, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36519493

RESUMO

This study provides insight into the overall system performance, stability, and delivery accuracy of the first clinical self-shielded stereotactic radiosurgery (SRS) system. Quality assurance procedures specifically developed for this unit are discussed, and trends and variations over the course of 2-years for beam constancy, targeting and dose delivery are presented. Absolute dose calibration for this 2.7 MV unit is performed to deliver 1 cGy/MU at dmax  = 7 mm at a source-to-axis-distance (SAD) of 450 mm for a 25 mm collimator. Output measurements were made with 2-setups: a device that attaches to a fixed position on the couch (daily) and a spherical phantom that attaches to the collimating wheel (monthly). Beam energy was measured using a cylindrical acrylic phantom at depths of 100 (D10 ) and 200 (D20 ) mm. Beam profiles were evaluated using Gafchromic film and compared with TPS beam data. Accuracy in beam targeting was quantified with the Winston-Lutz (WL) and end-to-end (E2E) tests. Delivery quality assurance (DQA) was performed prior to clinical treatments using Gafchromic EBT3/XD film. Net cumulative output adjustments of 15% (pre-clinical), 9% (1st year) and 3% (2nd year) were made. The mean output was 0.997 ± 0.010 cGy/MU (range: 0.960-1.046 cGy/MU) and 0.993 ± 0.029 cGy/MU (range: 0.884-1.065 cGy/MU) for measurements with the daily and monthly setups, respectively. The mean relative beam energy (D10 /D20 ) was 0.998 ± 0.004 (range: 0.991-1.006). The mean total targeting error was 0.46 ± 0.17 mm (range: 0.06-0.98 mm) for the WL and 0.52 ± 0.28 mm (range: 0.11-1.27 mm) for the E2E tests. The average gamma pass rates for DQA measurements were 99.0% and 90.5% for 2%/2 mm and 2%/1 mm gamma criteria, respectively. This SRS unit meets tolerance limits recommended by TG-135, MPPG 9a., and TG-142 with a treatment delivery accuracy similar to what is achieved by other SRS systems.


Assuntos
Radiocirurgia , Humanos , Radiocirurgia/métodos , Dosagem Radioterapêutica , Aceleradores de Partículas , Imagens de Fantasmas , Calibragem , Planejamento da Radioterapia Assistida por Computador/métodos
3.
Phys Imaging Radiat Oncol ; 7: 39-44, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31872085

RESUMO

BACKGROUND AND PURPOSE: Remote beam output audits, which independently measure an institution's machine calibration, are a common component of independent radiotherapy peer review. This work reviews the results and trends of these audit results across several organisations and geographical regions. MATERIALS AND METHODS: Beam output audit results from the Australian Clinical Dosimetry Services, International Atomic Energy Agency, Imaging and Radiation Oncology Core, and Radiation Dosimetry Services were evaluated from 2010 to the present. The rate of audit results outside a +/-5% tolerance was evaluated for photon and electron beams as a function of the year of irradiation and nominal beam energy. Additionally, examples of confirmed calibration errors were examined to provide guidance to clinical physicists and auditing bodies. RESULTS: Of the 210,167 audit results, 1323 (0.63%) were outside of tolerance. There was a clear trend of improved audit performance for more recent dates, and while all photon energies generally showed uniform rates of results out of tolerance, low (6 MeV) and high (≥18 MeV) energy electron beams showed significantly elevated rates. Twenty nine confirmed calibration errors were explored and attributed to a range of issues, such as equipment failures, errors in setup, and errors in performing the clinical reference calibration. Forty-two percent of these confirmed errors were detected during ongoing periodic monitoring, and not at the time of the first audit of the machine. CONCLUSIONS: Remote beam output audits have identified, and continue to identify, numerous and often substantial beam calibration errors.

4.
Radiat Oncol ; 11(1): 160, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27978843

RESUMO

Beam Output Auditing (BOA) is one key process of the EORTC radiation therapy quality assurance program. Here the results obtained between 2005 and 2014 are presented and compared to previous results.For all BOA reports the following parameters were scored: centre, country, date of audit, beam energies and treatment machines audited, auditing organisation, percentage of agreement between stated and measured dose.Four-hundred and sixty-one BOA reports were analyzed containing the results of 1790 photon and 1366 electron beams, delivered by 755 different treatment machines. The majority of beams (91.1%) were within the optimal limit of ≤ 3%. Only 13 beams (0.4%; n = 9 electrons; n = 4 photons), were out of the range of acceptance of ≤ 5%. Previous reviews reported a much higher percentage of 2.5% or more of the BOAs with >5% deviation.The majority of EORTC centres present beam output variations within the 3% tolerance cutoff value and only 0.4% of audited beams presented with variations of more than 5%. This is an important improvement compared to previous BOA results.


Assuntos
Garantia da Qualidade dos Cuidados de Saúde , Radioterapia (Especialidade)/normas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA