RESUMO
Metal-organic frameworks (MOFs) have garnered significant attention in recent years owing to their exceptional properties. Understanding the intricate relationship between the structure of a material and its properties is crucial for guiding the synthesis and application of these materials. (Scanning) Transmission electron microscopy (S)TEM imaging stands out as a powerful tool for structural characterization at the nanoscale, capable of detailing both periodic and aperiodic local structures. However, the high electron-beam sensitivity of MOFs presents substantial challenges in their structural characterization using (S)TEM. This paper summarizes the latest advancements in low-dose high-resolution (S)TEM imaging technology and its application in MOF material characterization. It covers aspects such as framework structure, defects, and surface and interface analysis, along with the distribution of guest molecules within MOFs. This review also discusses emerging technologies like electron ptychography and outlines several prospective research directions in this field.
RESUMO
Radiation sensitive materials are among the most difficult materials to study, even more so if they exist only as nanometer-sized particles, where their size is either intentional because of enhanced properties at the nano-scale or it is unintentional because it is impossible to obtain bigger particles of the same structure. In both cases characterization methods need to be optimized to get the most information out of these particles before the radiation damages them to a point where their structure is altered. When the particles are crystallized, both characteristics, the small size and the beam sensitivity, call for electron diffraction as a privileged investigation tool. The strong interaction of electrons (as compared to X-rays) with matter allows single crystal diffraction experiments on nanometer-sized crystals and for the same amount of beam damage, electron diffraction yields more information than X-rays. These inherent advantages of electron diffraction are optimized in the recently developed low-dose electron diffraction tomography (LD-EDT) by minimizing the necessary dose for a complete data collection. In this contribution we show that in some cases even doses as low as 2 e-/Ų can induce damage in crystal structures that inhibit a correct structure refinement. However, by LD-EDT we can obtain data using extremely low doses that don't alter the structure which make it then possible not only to solve crystal structures but also to refine them using dynamical diffraction theory. Here a synthetic oxide containing volatile Na and a metal-organic framework are given as examples. A dynamical refinement of the structures is possible with data sets requiring a dose of less than 0.15 e-/Ų.
RESUMO
Serial electron diffraction (SerialED), which applies a snapshot data acquisition strategy for each crystal, was introduced to tackle the problem of radiation damage in the structure determination of beam-sensitive materials by three-dimensional electron diffraction (3DED). The snapshot data acquisition in SerialED can be realized using both transmission and scanning transmission electron microscopes (TEM/STEM). However, the current SerialED workflow based on STEM setups requires special external devices and software, which limits broader adoption. Here, we present a simplified experimental implementation of STEM-based SerialED on Thermo Fisher Scientific STEMs using common proprietary software interfaced through Python scripts to automate data collection. Specifically, we utilize TEM Imaging and Analysis (TIA) scripting and TEM scripting to access the STEM functionalities of the microscope, and DigitalMicrograph scripting to control the camera for snapshot data acquisition. Data analysis adapts the existing workflow using the software CrystFEL, which was developed for serial X-ray crystallography. Our workflow for STEM SerialED can be used on any Gatan or Thermo Fisher Scientific camera. We apply this workflow to collect high-resolution STEM SerialED data from two aluminosilicate zeolites, zeolite Y and ZSM-25. We demonstrate, for the first time, ab initio structure determination through direct methods using STEM SerialED data. Zeolite Y is relatively stable under the electron beam, and STEM SerialED data extend to 0.60â Å. We show that the structural model obtained using STEM SerialED data merged from 358 crystals is nearly identical to that using continuous rotation electron diffraction data from one crystal. This demonstrates that accurate structures can be obtained from STEM SerialED. Zeolite ZSM-25 is very beam-sensitive and has a complex structure. We show that STEM SerialED greatly improves the data resolution of ZSM-25, compared with serial rotation electron diffraction (SerialRED), from 1.50 to 0.90â Å. This allows, for the first time, the use of standard phasing methods, such as direct methods, for the ab initio structure determination of ZSM-25.
RESUMO
This commentary describes a novel method for serial electron diffraction data collection in electron crystallography, utilizing a scanning transmission electron microscope to rapidly obtain patterns with low radiation dose. This approach, demonstrated with zeolite samples, has the potential to provide highly automated and rapid structures from nanocrystalline materials.
RESUMO
The oxygen stoichiometry of hollandite, KxMnO2-δ, nanorods has been accurately determined from a quantitative analysis of scanning-transmission electron microscopy (STEM) X-Ray Energy Dispersive Spectroscopy (XEDS) experiments carried out in chrono-spectroscopy mode. A methodology combining 3D reconstructions of high-angle annular dark field electron tomography experiments, using compressed-sensing algorithms, and quantification through the so-called ζ-factors method of XEDS spectra recorded on a high-sensitivity detector has been devised to determine the time evolution of the oxygen content of nanostructures of electron-beam sensitive oxides. Kinetic modeling of O-stoichiometry data provided K0.13MnO1.98 as overall composition for nanorods of the hollandite. The quantitative agreement, within a 1% mol error, observed with results obtained by macroscopic techniques (temperature-programmed reduction and neutron diffraction) validate the proposed methodology for the quantitative analysis, at the nanoscale, of light elements, as it is the case of oxygen, in the presence of heavy ones (K, Mn) in the highly compromised case of nanostructured materials which are prone to electron-beam reduction. Moreover, quantitative comparison of oxygen evolution data measured at macroscopic and nanoscopic levels allowed us to rationalize beam damage effects in structural terms and clarify the exact nature of the different steps involved in the reduction of these oxides with hydrogen.
RESUMO
The main aspects of material research: material synthesis, material structure, and material properties, are interrelated. Acquiring atomic structure information of electron beam sensitive materials by electron microscope, such as porous zeolites, organic-inorganic hybrid perovskites, metal-organic frameworks, is an important and challenging task. The difficulties in characterization of the structures will inevitably limit the optimization of their synthesis methods and further improve their performance. The emergence of integrated differential phase contrast scanning transmission electron microscopy (iDPC-STEM), a STEM characterization technique capable of obtaining images with high signal-to-noise ratio under lower doses, has made great breakthroughs in the atomic structure characterization of these materials. This article reviews the developments and applications of iDPC-STEM in electron beam sensitive materials, and provides an outlook on its capabilities and development.
Assuntos
Elétrons , Microscopia Eletrônica de Transmissão e Varredura/métodos , Microscopia de Contraste de FaseRESUMO
Sample thickness is an important parameter in transmission electron microscopy (TEM) imaging for interpreting image contrast and understanding the relationship between properties and microstructure. In this study, we introduce a method for sample thickness determination in scanning TEM (STEM) mode based on scanning moiré fringes (SMFs). Focal-series SMF imaging is used and sample thickness can be determined in situ at a medium magnification range, with beam damage and contamination avoided to a large extent. It provides a fast and convenient approach for determining sample thickness in TEM imaging, which is particularly useful for beam-sensitive materials.
RESUMO
Moiré fringe, originated from the beating of two sets of lattices, is a commonly observed phenomenon in physics, optics, and materials science. Recently, a new method of creating moiré fringe via scanning transmission electron microscopy (STEM) has been developed to image materials' structures at a large field of view. Moreover, this method shows great advantages in studying atomic structures of beam sensitive materials by significantly reduced electron dose. Here, the development of the STEM moiré fringe (STEM-MF) method is reviewed. The authors first introduce the theory of STEM-MF and then discuss the advances of this technique in combination with geometric phase analysis, annular bright field imaging, energy dispersive X-ray spectroscopy, and electron energy loss spectroscopy. Applications of STEM-MF on strain, defects, 2D materials, and beam-sensitive materials are further summarized. Finally, the authors' perspectives on the future directions of STEM-MF are presented.
RESUMO
We review the use of transmission electron microscopy (TEM) and associated techniques for the analysis of beam-sensitive materials and complex, multiphase systems in-situ or close to their native state. We focus on materials prone to damage by radiolysis and explain that this process cannot be eliminated or switched off, requiring TEM analysis to be done within a dose budget to achieve an optimum dose-limited resolution. We highlight the importance of determining the damage sensitivity of a particular system in terms of characteristic changes that occur on irradiation under both an electron fluence and flux by presenting results from a series of molecular crystals. We discuss the choice of electron beam accelerating voltage and detectors for optimizing resolution and outline the different strategies employed for low-dose microscopy in relation to the damage processes in operation. In particular, we discuss the use of scanning TEM (STEM) techniques for maximizing information content from high-resolution imaging and spectroscopy of minerals and molecular crystals. We suggest how this understanding can then be carried forward for in-situ analysis of samples interacting with liquids and gases, provided any electron beam-induced alteration of a specimen is controlled or used to drive a chosen reaction. Finally, we demonstrate that cryo-TEM of nanoparticle samples snap-frozen in vitreous ice can play a significant role in benchmarking dynamic processes at higher resolution. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.
RESUMO
Electron microscopy allows the extraction of multidimensional spatiotemporally correlated structural information of diverse materials down to atomic resolution, which is essential for figuring out their structure-property relationships. Unfortunately, the high-energy electrons that carry this important information can cause damage by modulating the structures of the materials. This has become a significant problem concerning the recent boost in materials science applications of a wide range of beam-sensitive materials, including metal-organic frameworks, covalent-organic frameworks, organic-inorganic hybrid materials, 2D materials, and zeolites. To this end, developing electron microscopy techniques that minimize the electron beam damage for the extraction of intrinsic structural information turns out to be a compelling but challenging need. This article provides a comprehensive review on the revolutionary strategies toward the electron microscopic imaging of beam-sensitive materials and associated materials science discoveries, based on the principles of electron-matter interaction and mechanisms of electron beam damage. Finally, perspectives and future trends in this field are put forward.
RESUMO
Tilting crystals to proper zone axes is a necessary but tedious work in taking selected area electron diffraction patterns (SAED) and high-resolution images using transmission electron microscope (TEM). This process not only costs a lot of time but also limits the application of TEM in electron-beam sensitive materials. Therefore, it is desirable to develop a simple method for tilting crystals from random orientations to a specific zone axis quickly. Herein, we describe a novel program, Zones, which can index the electron diffraction pattern and calculate the tilting angles of a double-tilt sample holder from the current orientation to a desired zone axis. It can also bring crystals that are slightly deviated from a zone axis to the exact zone with the help of Laue ring in the diffraction pattern. This program has been successfully applied to studies of zeolites and metal-organic frameworks (MOFs), known as being electron-beam sensitive. The program shows its power not only in saving the operator's time but also in preventing the crystals from quick beam damages.
RESUMO
Many functional materials are difficult to analyse by scanning transmission electron microscopy (STEM) on account of their beam sensitivity and low contrast between different phases. The problem becomes even more severe when thick specimens need to be investigated, a situation that is common for materials that are ordered from the nanometre to micrometre length scales or when performing dynamic experiments in a TEM liquid cell. Here we report a method to optimize annular dark-field (ADF) STEM imaging conditions and detector geometries for a thick and beam-sensitive low-contrast specimen using the example of a carbon nanotube/polymer nanocomposite. We carried out Monte Carlo simulations as well as quantitative ADF-STEM imaging experiments to predict and verify optimum contrast conditions. The presented method is general, can be easily adapted to other beam-sensitive and/or low-contrast materials, as shown for a polymer vesicle within a TEM liquid cell, and can act as an expert guide on whether an experiment is feasible and to determine the best imaging conditions.