Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 43(5): 114199, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38728138

RESUMO

Implantable electrode arrays are powerful tools for directly interrogating neural circuitry in the brain, but implementing this technology in the spinal cord in behaving animals has been challenging due to the spinal cord's significant motion with respect to the vertebral column during behavior. Consequently, the individual and ensemble activity of spinal neurons processing motor commands remains poorly understood. Here, we demonstrate that custom ultraflexible 1-µm-thick polyimide nanoelectronic threads can conduct laminar recordings of many neuronal units within the lumbar spinal cord of unrestrained, freely moving mice. The extracellular action potentials have high signal-to-noise ratio, exhibit well-isolated feature clusters, and reveal diverse patterns of activity during locomotion. Furthermore, chronic recordings demonstrate the stable tracking of single units and their functional tuning over multiple days. This technology provides a path for elucidating how spinal circuits compute motor actions.


Assuntos
Eletrodos Implantados , Medula Espinal , Animais , Medula Espinal/fisiologia , Camundongos , Potenciais de Ação/fisiologia , Atividade Motora/fisiologia , Neurônios/fisiologia , Locomoção/fisiologia , Camundongos Endogâmicos C57BL , Masculino
2.
Neurophotonics ; 11(3): 033404, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38384657

RESUMO

Cognitive functions are mediated through coordinated and dynamic neuronal responses that involve many different areas across the brain. Therefore, it is of high interest to simultaneously record neuronal activity from as many brain areas as possible while the subject performs a cognitive behavioral task. One of the emerging tools to achieve a mesoscopic field of view is wide-field imaging of cortex-wide dynamics in mice. Wide-field imaging is cost-effective, user-friendly, and enables obtaining cortex-wide signals from mice performing complex and demanding cognitive tasks. Importantly, wide-field imaging offers an unbiased cortex-wide observation that sheds light on overlooked cortical regions and highlights parallel processing circuits. Recent wide-field imaging studies have shown that multi-area cortex-wide patterns, rather than just a single area, are involved in encoding cognitive functions. The optical properties of wide-field imaging enable imaging of different brain signals, such as layer-specific, inhibitory subtypes, or neuromodulation signals. Here, I review the main advantages of wide-field imaging in mice, review the recent literature, and discuss future directions of the field. It is expected that wide-field imaging in behaving mice will continue to gain popularity and aid in understanding the mesoscale dynamics underlying cognitive function.

3.
Neuron ; 112(6): 909-923.e9, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38242115

RESUMO

Neural population dynamics relevant to behavior vary over multiple spatial and temporal scales across three-dimensional volumes. Current optical approaches lack the spatial coverage and resolution necessary to measure and manipulate naturally occurring patterns of large-scale, distributed dynamics within and across deep brain regions such as the striatum. We designed a new micro-fiber array approach capable of chronically measuring and optogenetically manipulating local dynamics across over 100 targeted locations simultaneously in head-fixed and freely moving mice, enabling the investigation of cell-type- and neurotransmitter-specific signals over arbitrary 3D volumes at a spatial resolution and coverage previously inaccessible. We applied this method to resolve rapid dopamine release dynamics across the striatum, revealing distinct, modality-specific spatiotemporal patterns in response to salient sensory stimuli extending over millimeters of tissue. Targeted optogenetics enabled flexible control of neural signaling on multiple spatial scales, better matching endogenous signaling patterns, and the spatial localization of behavioral function across large circuits.


Assuntos
Encéfalo , Dopamina , Camundongos , Animais , Encéfalo/fisiologia , Corpo Estriado , Neostriado , Optogenética/métodos
4.
Cell Metab ; 35(3): 456-471.e6, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36827985

RESUMO

Animals continuously weigh hunger and thirst against competing needs, such as social contact and mating, according to state and opportunity. Yet neuronal mechanisms of sensing and ranking nutritional needs remain poorly understood. Here, combining calcium imaging in freely behaving mice, optogenetics, and chemogenetics, we show that two neuronal populations of the lateral hypothalamus (LH) guide increasingly hungry animals through behavioral choices between nutritional and social rewards. While increased food consumption was marked by increasing inhibition of a leptin receptor-expressing (LepRLH) subpopulation at a fast timescale, LepRLH neurons limited feeding or drinking and promoted social interaction despite hunger or thirst. Conversely, neurotensin-expressing LH neurons preferentially encoded water despite hunger pressure and promoted water seeking, while relegating social needs. Thus, hunger and thirst gate both LH populations in a complementary manner to enable the flexible fulfillment of multiple essential needs.


Assuntos
Fome , Região Hipotalâmica Lateral , Camundongos , Animais , Região Hipotalâmica Lateral/fisiologia , Fome/fisiologia , Neurônios/fisiologia , Neurotensina
5.
Front Neuroinform ; 16: 851188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559212

RESUMO

Two-photon Ca2+ imaging is a widely used technique for investigating brain functions across multiple spatial scales. However, the recording of neuronal activities is affected by movement of the brain during tasks in which the animal is behaving normally. Although post-hoc image registration is the commonly used approach, the recent developments of online neuroscience experiments require real-time image processing with efficient motion correction performance, posing new challenges in neuroinformatics. We propose a fast and accurate image density feature-based motion correction method to address the problem of imaging animal during behaviors. This method is implemented by first robustly estimating and clustering the density features from two-photon images. Then, it takes advantage of the temporal correlation in imaging data to update features of consecutive imaging frames with efficient calculations. Thus, motion artifacts can be quickly and accurately corrected by matching the features and obtaining the transformation parameters for the raw images. Based on this efficient motion correction strategy, our algorithm yields promising computational efficiency on imaging datasets with scales ranging from dendritic spines to neuronal populations. Furthermore, we show that the proposed motion correction method outperforms other methods by evaluating not only computational speed but also the quality of the correction performance. Specifically, we provide a powerful tool to perform motion correction for two-photon Ca2+ imaging data, which may facilitate online imaging experiments in the future.

6.
Neurobiol Dis ; 162: 105562, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838667

RESUMO

Alzheimer's disease (AD) causes progressive age-related defects in memory and cognitive function and has emerged as a major health and socio-economic concern in the US and worldwide. To develop effective therapeutic treatments for AD, we need to better understand the neural mechanisms by which AD causes memory loss and cognitive deficits. Here we examine large-scale hippocampal neural population calcium activities imaged at single cell resolution in a triple-transgenic Alzheimer's disease mouse model (3xTg-AD) that presents both amyloid plaque and neurofibrillary pathological features along with age-related behavioral defects. To measure encoding of environmental location in hippocampal neural ensembles in the 3xTg-AD mice in vivo, we performed GCaMP6-based calcium imaging using head-mounted, miniature fluorescent microscopes ("miniscopes") on freely moving animals. We compared hippocampal CA1 excitatory neural ensemble activities during open-field exploration and track-based route-running behaviors in age-matched AD and control mice at young (3-6.5 months old) and old (18-21 months old) ages. During open-field exploration, 3xTg-AD CA1 excitatory cells display significantly higher calcium activity rates compared with Non-Tg controls for both the young and old age groups, suggesting that in vivo enhanced neuronal calcium ensemble activity is a disease feature. CA1 neuronal populations of 3xTg-AD mice show lower spatial information scores compared with control mice. The spatial firing of CA1 neurons of old 3xTg-AD mice also displays higher sparsity and spatial coherence, indicating less place specificity for spatial representation. We find locomotor speed significantly modulates the amplitude of hippocampal neural calcium ensemble activities to a greater extent in 3xTg-AD mice during open field exploration. Our data offer new and comprehensive information about age-dependent neural circuit activity changes in this important AD mouse model and provide strong evidence that spatial coding defects in the neuronal population activities are associated with AD pathology and AD-related memory behavioral deficits.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Hipocampo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cálcio , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Camundongos Transgênicos , Proteínas tau/metabolismo
7.
Front Cell Neurosci ; 14: 603095, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343304

RESUMO

Monitoring astrocytic Ca2+ activity is essential to understand the physiological and pathological roles of astrocytes in the brain. However, previous commonly used methods for studying astrocytic Ca2+ activities can be applied in only anesthetized or head-fixed animals, which significantly affects in vivo astrocytic Ca2+ dynamics. In the current study, we combined optic fiber recordings with genetically encoded Ca2+ indicators (GECIs) to monitor astrocytic activity in freely behaving mice. This approach enabled selective and reliable measurement of astrocytic Ca2+ activity, which was verified by the astrocyte-specific labeling of GECIs and few movement artifacts. Additionally, astrocytic Ca2+ activities induced by locomotion or footshock were stably recorded in the cortices and hippocampi of freely behaving mice. Furthermore, this method allowed for the longitudinal study of astrocytic activities over several weeks. This work provides a powerful approach to record astrocytic activity selectively, stably, and chronically in freely behaving mice.

8.
Elife ; 82019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31880536

RESUMO

Active dendrites impact sensory processing and behaviour. However, it remains unclear how active dendritic integration relates to somatic output in vivo. We imaged semi-simultaneously GCaMP6s signals in the soma, trunk and distal tuft dendrites of layer 5 pyramidal neurons in the awake mouse primary visual cortex. We found that apical tuft signals were dominated by widespread, highly correlated calcium transients throughout the tuft. While these signals were highly coupled to trunk and somatic transients, the frequency of calcium transients was found to decrease in a distance-dependent manner from soma to tuft. Ex vivo recordings suggest that low-frequency back-propagating action potentials underlie the distance-dependent loss of signals, while coupled somato-dendritic signals can be triggered by high-frequency somatic bursts or strong apical tuft depolarization. Visual stimulation and locomotion increased neuronal activity without affecting somato-dendritic coupling. High, asymmetric somato-dendritic coupling is therefore a widespread feature of layer 5 neurons activity in vivo.


Assuntos
Locomoção/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Córtex Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Dendritos/fisiologia , Camundongos , Estimulação Luminosa , Células Piramidais/metabolismo
9.
Curr Protoc Neurosci ; 86(1): e56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30315730

RESUMO

Visualizing neural activity from deep brain regions in freely behaving animals through miniature fluorescent microscope (miniscope) systems is becoming more important for understanding neural encoding mechanisms underlying cognitive functions. Here we present our custom-designed miniscope GRadient INdex (GRIN) lens system that enables simultaneously recording from hundreds of neurons for months. This article includes miniscope design, the surgical procedure for GRIN lens implantation, miniscope mounting on the head of a mouse, and data acquisition and analysis. First, a target brain region is labeled with virus expressing GCaMP6; second, a GRIN lens is implanted above the target brain region; third, following mouse surgical recovery, a miniscope is mounted on the head of the mouse above the GRIN lens; and finally, neural activity is recorded from the freely behaving mouse. This system can be applied to recording the same population of neurons longitudinally, enabling the elucidation of neural mechanisms underlying behavioral control. © 2018 by John Wiley & Sons, Inc.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Cálcio/metabolismo , Neuroimagem , Neurônios/fisiologia , Animais , Cristalino/fisiologia , Camundongos
10.
Cell Rep ; 24(10): 2521-2528, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184487

RESUMO

The integration of visual stimuli and motor feedback is critical for successful visually guided navigation. These signals have been shown to shape neuronal activity in the primary visual cortex (V1), in an experience-dependent manner. Here, we examined whether visual, reward, and self-motion-related inputs are integrated in order to encode behaviorally relevant locations in V1 neurons. Using a behavioral task in a virtual environment, we monitored layer 2/3 neuronal activity as mice learned to locate a reward along a linear corridor. With learning, a subset of neurons became responsive to the expected reward location. Without a visual cue to the reward location, both behavioral and neuronal responses relied on self-motion-derived estimations. However, when visual cues were available, both neuronal and behavioral responses were driven by visual information. Therefore, a population of V1 neurons encode behaviorally relevant spatial locations, based on either visual cues or on self-motion feedback when visual cues are absent.


Assuntos
Recompensa , Córtex Visual/fisiologia , Animais , Retroalimentação , Feminino , Masculino , Camundongos , Destreza Motora/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Comportamento Espacial/fisiologia
11.
Neurosci Biobehav Rev ; 85: 65-80, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28887226

RESUMO

The theta oscillation (5-10Hz) is a prominent behavior-specific brain rhythm. This review summarizes studies showing the multifaceted role of theta rhythm in cognitive functions, including spatial coding, time coding and memory, exploratory locomotion and anxiety-related behaviors. We describe how activity of hippocampal theta rhythm generators - medial septum, nucleus incertus and entorhinal cortex, links theta with specific behaviors. We review evidence for functions of the theta-rhythmic signaling to subcortical targets, including lateral septum. Further, we describe functional associations of theta oscillation properties - phase, frequency and amplitude - with memory, locomotion and anxiety, and outline how manipulations of these features, using optogenetics or pharmacology, affect associative and innate behaviors. We discuss work linking cognition to the slope of the theta frequency to running speed regression, and emotion-sensitivity (anxiolysis) to its y-intercept. Finally, we describe parallel emergence of theta oscillations, theta-mediated neuronal activity and behaviors during development. This review highlights a complex interplay of neuronal circuits and synchronization features, which enables an adaptive regulation of multiple behaviors by theta-rhythmic signaling.


Assuntos
Comportamento Animal/fisiologia , Cognição/fisiologia , Emoções/fisiologia , Locomoção/fisiologia , Memória/fisiologia , Animais , Hipocampo/fisiologia , Humanos
12.
Cell ; 171(5): 1176-1190.e17, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29107332

RESUMO

The medial amygdala (MeA) plays a critical role in processing species- and sex-specific signals that trigger social and defensive behaviors. However, the principles by which this deep brain structure encodes social information is poorly understood. We used a miniature microscope to image the Ca2+ dynamics of large neural ensembles in awake behaving mice and tracked the responses of MeA neurons over several months. These recordings revealed spatially intermingled subsets of MeA neurons with distinct temporal dynamics. The encoding of social information in the MeA differed between males and females and relied on information from both individual cells and neuronal populations. By performing long-term Ca2+ imaging across different social contexts, we found that sexual experience triggers lasting and sex-specific changes in MeA activity, which, in males, involve signaling by oxytocin. These findings reveal basic principles underlying the brain's representation of social information and its modulation by intrinsic and extrinsic factors.


Assuntos
Tonsila do Cerebelo/fisiologia , Neurônios/citologia , Vigília , Tonsila do Cerebelo/citologia , Animais , Comportamento Animal , Sinais (Psicologia) , Endoscopia/métodos , Feminino , Masculino , Camundongos , Microscopia/métodos , Ocitocina/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal , Comportamento Social
13.
J Neurosci ; 37(47): 11455-11468, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29066561

RESUMO

Molecular layer interneurons (MLIs, stellate and basket cells) of the cerebellar cortex are linked together by chemical and electrical synapses and exert a potent feedforward inhibition on Purkinje cells. The functional role of MLIs during specific motor tasks is uncertain. Here, we used two-photon imaging to study the patterns of activity of neighboring individual MLIs in the Crus II region of awake female mice during two types of oromotor activity, licking and bruxing, using specific expression of the genetically encoded calcium indicator protein GCaMP6s. We found that both stellate and basket cells engaged in synchronized waves of calcium activity during licking and bruxing, with high degrees of correlation among the signals collected in individual MLIs. In contrast, no calcium activity was observed during whisking. MLI activity tended to lag behind the onset of sustained licking episodes, indicating a regulatory action of MLIs during licking. Furthermore, during licking, stellate cell activity was anisotropic: the coordination was constant along the direction of parallel fibers (PFs), but fell off with distance along the orthogonal direction. These results suggest a PF drive for Ca2+ signals during licking. In contrast, during bruxing, MLI activity was neither clearly organized spatially nor temporally correlated with oromotor activity. In conclusion, MLI activity exhibits a high degree of correlation both in licking and in bruxing, but spatiotemporal patterns of activity display significant differences for the two types of behavior.SIGNIFICANCE STATEMENT It is known that, during movement, the activity of molecular layer interneurons (MLIs) of the cerebellar cortex is enhanced. However, MLI-MLI interactions are complex because they depend both from excitatory electrical synapses and from potentially inhibitory chemical synapses. Accordingly, the pattern of MLI activity during movement has been unclear. Here, during two oromotor tasks, licking and bruxism, individual neighboring MLIs displayed highly coordinated activity, showing that the positive influences binding MLIs together are predominant. We further find that spatiotemporal patterns differ between licking and bruxing, suggesting that the precise pattern of MLI activity depends on the nature of the motor task.


Assuntos
Cerebelo/fisiologia , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Boca/inervação , Animais , Sinalização do Cálcio , Cerebelo/citologia , Feminino , Interneurônios/metabolismo , Camundongos , Neurônios Motores/metabolismo , Boca/fisiologia , Periodicidade , Vibrissas/inervação , Vibrissas/fisiologia
14.
J Neurosci Methods ; 273: 74-85, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27494989

RESUMO

BACKGROUND: Transgenic mice are widely used for the study of basic visual function and retinal disease, including in psychophysical tests. Mice have a robust pupillary light reflex that controls the amount of light that enters the eye, and the attenuating effects of the pupil must be considered during such tests. Measurement of the size of pupils at various luminance levels requires that mice remain stable over prolonged periods of time; however, sedation of mice with anesthesia and/or manual restraint can influence the size of their pupils. NEW METHOD: We present a system to measure the pupillary light response to steady lights of freely behaving mice using a custom-built, portable device that automatically acquires close-up images of their eyes. The device takes advantage of the intrinsic nature of mice to inspect objects of interest and can be used to measure pupillary responses in optomotor or operant behavior testing chambers. RESULTS: The size of the pupils in freely behaving mice decreased gradually with luminance from a maximal area in the dark of 3.8mm2 down to a minimum 0.14mm2 at 80 scotopic cd/m2. The data was well fit with a Hill equation with Lo equal to 0.21cd/m2 and coefficient h=0.48. COMPARISON WITH EXISTING METHODS: These values agree with prior measurements of the pupillary response of unrestrained mice that use more laborious and time consuming approaches. CONCLUSIONS: Our new method facilitates practical, straightforward and accurate measurements of pupillary responses made under the same experimental conditions as those used during psychophysical testing.


Assuntos
Luz , Pupila/fisiologia , Pupila/efeitos da radiação , Vigília , Animais , Feminino , Iluminação/métodos , Camundongos , Dinâmica não Linear , Imagem Óptica , Estimulação Luminosa
15.
Front Neurosci ; 10: 53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973444

RESUMO

Prolonged exposure to abnormally high calcium concentrations is thought to be a core mechanism underlying hippocampal damage in epileptic patients; however, no prior study has characterized calcium activity during seizures in the live, intact hippocampus. We have directly investigated this possibility by combining whole-brain electroencephalographic (EEG) measurements with microendoscopic calcium imaging of pyramidal cells in the CA1 hippocampal region of freely behaving mice treated with the pro-convulsant kainic acid (KA). We observed that KA administration led to systematic patterns of epileptiform calcium activity: a series of large-scale, intensifying flashes of increased calcium fluorescence concurrent with a cluster of low-amplitude EEG waveforms. This was accompanied by a steady increase in cellular calcium levels (>5 fold increase relative to the baseline), followed by an intense spreading calcium wave characterized by a 218% increase in global mean intensity of calcium fluorescence (n = 8, range [114-349%], p < 10(-4); t-test). The wave had no consistent EEG phenotype and occurred before the onset of motor convulsions. Similar changes in calcium activity were also observed in animals treated with 2 different proconvulsant agents, N-methyl-D-aspartate (NMDA) and pentylenetetrazol (PTZ), suggesting the measured changes in calcium dynamics are a signature of seizure activity rather than a KA-specific pathology. Additionally, despite reducing the behavioral severity of KA-induced seizures, the anticonvulsant drug valproate (VA, 300 mg/kg) did not modify the observed abnormalities in calcium dynamics. These results confirm the presence of pathological calcium activity preceding convulsive motor seizures and support calcium as a candidate signaling molecule in a pathway connecting seizures to subsequent cellular damage. Integrating in vivo calcium imaging with traditional assessment of seizures could potentially increase translatability of pharmacological intervention, leading to novel drug screening paradigms and therapeutics designed to target and abolish abnormal patterns of both electrical and calcium excitation.

16.
Cereb Cortex ; 25(9): 2542-55, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24654258

RESUMO

Although it is generally assumed that the hippocampus is involved in associative learning, the specific contribution of the different synapses present in its intrinsic circuit or comprising its afferents and efferents is poorly defined. We studied here activity-dependent changes in synaptic strength of 9 hippocampal synapses (corresponding to the intrinsic hippocampal circuitry and to its main inputs and outputs) during the acquisition of a trace eyeblink conditioning in behaving mice. The timing and intensity of synaptic changes across the acquisition process was determined. The evolution of these timed changes in synaptic strength indicated that their functional organization did not coincide with their sequential distribution according to anatomical criteria and connectivity. Furthermore, we explored the functional relevance of the extrinsic and intrinsic afferents to CA3 and CA1 pyramidal neurons, and evaluated the distinct input patterns to the intrinsic hippocampal circuit. Results confirm that the acquisition of a classical eyeblink conditioning is a multisynaptic process in which the contribution of each synaptic contact is different in strength, and takes place at different moments across learning. Thus, the precise and timed activation of multiple hippocampal synaptic contacts during classical eyeblink conditioning evokes a specific, dynamic map of functional synaptic states in that circuit.


Assuntos
Aprendizagem por Associação/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Animais , Piscadela/fisiologia , Condicionamento Clássico , Estimulação Elétrica , Eletromiografia , Potenciais Pós-Sinápticos Excitadores , Lateralidade Funcional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estatísticas não Paramétricas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA