Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066006

RESUMO

In synchrotrons, accurate knowledge of the magnetic field generated by bending dipole magnets is essential to ensure beam stability. Measurement campaigns are necessary to characterize the field. The choice of the measurement method for such campaigns is determined by the combination of magnet dimensions and operating conditions and typically require a trade-off between accuracy and versatility. The single stretched wire (SSW) is a well-known, polyvalent method to measure the integral field of magnets having a wide range of geometries. It, however, requires steady-state excitation. This work presents a novel implementation of this method called pulsed SSW, which allows the system to measure rapidly time-varying magnetic fields, as is often needed, to save power or gain beam time. We first introduce the measurement principle of the pulsed SSW, followed by a combined strategy to calculate the absolute magnetic field by incorporating the classic DC SSW method. Using a bending magnet from the Proton Synchrotron Booster located at the European Organization for Nuclear Research as a case study, we validate the pulsed SSW method and compare its dynamic measurement capabilities to a fixed induction coil, showing thereby how the coil calibration must be adjusted according to the field level. Finally, we assess the method's measurement accuracy using the standard SSW as a reference and present an analysis of the primary noise contributors.

2.
J Synchrotron Radiat ; 28(Pt 4): 1041-1049, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212867

RESUMO

The diaboloid is a reflecting surface that converts a spherical wave to a cylindrical wave. This complex surface may find application in new Advanced Light Source bending-magnet beamlines or in other beamlines that now use toroidal optics for astigmatic focusing. Here, the numerical implementation of diaboloid mirrors is described, and the benefit of this mirror in beamlines exploiting diffraction-limited storage rings is studied by ray tracing. The use of diaboloids becomes especially interesting for the new low-emittance storage rings because the reduction of aberration becomes essential for such small sources. The validity of the toroidal and other mirror surfaces approximating the diaboloid, and the effect of the mirror magnification, are discussed.

3.
J Synchrotron Radiat ; 26(Pt 5): 1835-1842, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490178

RESUMO

An optical design study of a bending-magnet beamline, based on multi-bend achromat storage ring lattices, at the High Energy Photon Source, to be built in Beijing, China, is described. The main purpose of the beamline design is to produce a micro-scale beam from a bending-magnet source with little flux loss through apertures. To maximize the flux of the focal spot, the synchrotron source will be 1:1 imaged to a virtual source by a toroidal mirror; a mirror pair will be used to collimate the virtual source into quasi-parallel light which will be refocused by a Kirkpatrick-Baez mirror pair. In the case presented here, a beamline for tender X-rays ranging from 2.1 keV to 7.8 keV, with a spot size of approximately 7 µm (H) × 6 µm (V) and flux up to 2 × 1012 photons s-1, can be achieved for the purpose of X-ray absorption fine-structure (XAFS)-related experiments, such as scanning micro-XAFS and full-field nano-XAFS.

4.
J Synchrotron Radiat ; 26(Pt 2): 543-550, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855266

RESUMO

The BL02B bending-magnet beamline at the Shanghai Synchrotron Radiation Facility (SSRF) has been constructed and is now operational for ambient-pressure photoelectron spectroscopy (APPES) and photon-in/photon-out spectroscopy (PIPOS) experimental use. Optical optimization was implemented for realization of high performance, e.g. photon flux, energy-resolving power and focus spot size. X-ray photoelectron spectroscopy experiments show that the energy range extends from 40 to 2000 eV. Argon, nitrogen and neon gas core-shell excitation spectra indicate energy-resolving powers of over 1.4 × 104 @ 244 eV, 1.0 × 104 @ 401 eV and 7.0 × 103 @ 867 eV, respectively. The measured photon flux is 1.3 × 1011 photons s-1 @ E/ΔE = 3700 at 244 eV at the expected sample position, for the SSRF electron energy of 3.5 GeV and electron current of 240 mA. The spot sizes are 177 µm × 23 µm and 150 µm × 46 µm at the APPES and PIPOS samples, respectively.

5.
J Synchrotron Radiat ; 25(Pt 5): 1541-1547, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179195

RESUMO

The Hard X-ray Photo-Electron Spectroscopy (HAXPES) beamline (PES-BL14), installed at the 1.5 T bending-magnet port at the Indian synchrotron (Indus-2), is now available to users. The beamline can be used for X-ray photo-emission electron spectroscopy measurements on solid samples. The PES beamline has an excitation energy range from 3 keV to 15 keV for increased bulk sensitivity. An in-house-developed double-crystal monochromator [Si (111)] and a platinum-coated X-ray mirror are used for the beam monochromatization and manipulation, respectively. This beamline is equipped with a high-energy (up to 15 keV) high-resolution (meV) hemispherical analyzer with a microchannel plate and CCD detector system with SpecsLab Prodigy and CasaXPS software. Additional user facilities include a thin-film laboratory for sample preparation and a workstation for on-site data processing. In this article, the design details of the beamline, other facilities and some recent scientific results are described.

6.
J Synchrotron Radiat ; 24(Pt 2): 386-391, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28244431

RESUMO

Third-generation storage rings are massively evolving due to the very compact nature of the multi-bend achromat (MBA) lattice which allows amazing decreases of the horizontal electron beam emittance, but leaves very little place for infrared (IR) extraction mirrors to be placed, thus prohibiting traditional IR beamlines. In order to circumvent this apparent restriction, an optimized optical layout directly integrated inside a SOLEIL synchrotron dipole chamber that delivers intense and almost aberration-free beams in the near- to mid-IR domain (1-30 µm) is proposed and analyzed, and which can be integrated into space-restricted MBA rings. Since the optics and chamber are interdependent, the feasibility of this approach depends on a large part on the technical ability to assemble mechanically the optics inside the dipole chamber and control their resulting stability and thermo-mechanical deformation. Acquiring this expertise should allow dipole chambers to provide almost aberration-free IR synchrotron sources on current and `ultimate' MBA storage rings.

7.
J Synchrotron Radiat ; 23(Pt 6): 1501-1506, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787257

RESUMO

Various upgrades have been completed at the XRD1 beamline at the Brazilian synchrotron light source (LNLS). The upgrades are comprehensive, with changes to both hardware and software, now allowing users of the beamline to conduct X-ray powder diffraction experiments with faster data acquisition times and improved quality. The main beamline parameters and the results obtained for different standards are presented, showing the beamline ability of performing high-quality experiments in transmission geometry. XRD1 operates in the 5.5-14 keV range and has a photon flux of 7.8 × 109 photons s-1 (with 100 mA) at 12 keV, which is one of the typical working energies. At 8 keV (the other typical working energy) the photon flux at the sample position is 3.4 × 1010 photons s-1 and the energy resolution ΔE/E = 3 × 10-4.

8.
J Synchrotron Radiat ; 23(Pt 5): 1124-30, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27577766

RESUMO

Vacuum-ultraviolet radiation delivered by bending-magnet sources is used at numerous synchrotron radiation facilities worldwide. As bending-magnet radiation is inherently much less collimated compared with undulator sources, the generation of high-quality intense bending-magnet vacuum-ultraviolet photon beams is extremely demanding in terms of the optical layout due to the necessary larger collection apertures. In this article, an optimized optical layout which takes into account both the optical and electron beam properties is proposed. This layout delivers an improved beam emittance of over one order of magnitude compared with existing vacuum-ultraviolet bending-magnet beamlines that, up to now, do not take into account electron beam effects. The arrangement is made of two dedicated mirrors, a cylindrical and a cone-shaped one, that focus independently both the horizontal and the vertical emission of a bending-magnet source, respectively, and has been already successfully applied in the construction of the infrared beamline at the Brazilian synchrotron. Using this scheme, two vacuum-ultraviolet beamline designs based on a SOLEIL synchrotron bending-magnet source are proposed and analysed. They would be useful for future upgrades to the DISCO beamline at SOLEIL and could be readily implemented at other synchrotron radiation facilities.

9.
J Synchrotron Radiat ; 23(2): 629-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26917153

RESUMO

The protein crystallography beamline (PX-BL21), installed at the 1.5 T bending-magnet port at the Indian synchrotron (Indus-2), is now available to users. The beamline can be used for X-ray diffraction measurements on a single crystal of macromolecules such as proteins, nucleic acids and their complexes. PX-BL21 has a working energy range of 5-20 keV for accessing the absorption edges of heavy elements commonly used for phasing. A double-crystal monochromator [Si(111) and Si(220)] and a pair of rhodium-coated X-ray mirrors are used for beam monochromatization and manipulation, respectively. This beamline is equipped with a single-axis goniometer, Rayonix MX225 CCD detector, fluorescence detector, cryogenic sample cooler and automated sample changer. Additional user facilities include a workstation for on-site data processing and a biochemistry laboratory for sample preparation. In this article the beamline, other facilities and some recent scientific results are briefly described.


Assuntos
Cristalografia por Raios X/métodos , Proteínas/química , Síncrotrons
10.
J Synchrotron Radiat ; 22(5): 1163-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26289267

RESUMO

Synchrotron infrared beamlines are powerful tools on which to perform spectroscopy on microscopic length scales but require working with large bending-magnet source apertures in order to provide intense photon beams to the experiments. Many infrared beamlines use a single toroidal-shaped mirror to focus the source emission which generates, for large apertures, beams with significant geometrical aberrations resulting from the shape of the source and the beamline optics. In this paper, an optical layout optimized for synchrotron infrared beamlines, that removes almost totally the geometrical aberrations of the source, is presented and analyzed. This layout is already operational on the IR beamline of the Brazilian synchrotron. An infrared beamline design based on a SOLEIL bending-magnet source is given as an example, which could be useful for future IR beamline improvements at this facility.

11.
J Synchrotron Radiat ; 22(2): 288-316, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25723931

RESUMO

The maximum of the Wigner distribution (WD) of synchrotron radiation (SR) fields is considered as a possible definition of SR source brightness. Such a figure of merit was originally introduced in the SR community by Kim [(1986), Nucl. Instrum. Methods Phys. Res. A, 246, 71-76]. The brightness defined in this way is always positive and, in the geometrical optics limit, can be interpreted as the maximum density of photon flux in phase space. For undulator and bending magnet radiation from a single electron, the WD function can be explicitly calculated. In the case of an electron beam with a finite emittance the brightness is given by the maximum of the convolution of a single electron WD function and the probability distribution of the electrons in phase space. In the particular case when both electron beam size and electron beam divergence dominate over the diffraction size and the diffraction angle, one can use a geometrical optics approach. However, there are intermediate regimes when only the electron beam size or the electron beam divergence dominate. In these asymptotic cases the geometrical optics approach is still applicable, and the brightness definition used here yields back once more to the maximum photon flux density in phase space. In these intermediate regimes a significant numerical disagreement is found between exact calculations and the approximation for undulator brightness currently used in the literature. The WD formalism is extended to a satisfactory theory for the brightness of a bending magnet. It is found that in the intermediate regimes the usually accepted approximation for bending magnet brightness turns out to be inconsistent even parametrically.

12.
J Synchrotron Radiat ; 22(1): 187-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25537608

RESUMO

MX1 is a bending-magnet crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range from 8 to 18 keV to a focal spot at the sample position of 120 µm FWHM. The beamline endstation and ancillary equipment facilitate local and remote access for both chemical and biological macromolecular crystallography. Here, the design of the beamline and endstation are discussed. The beamline has enjoyed a full user program for the last seven years and scientific highlights from the user program are also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA