Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; : e63800, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934054

RESUMO

We report three siblings homozygous for CSF1R variant c.1969 + 115_1969 + 116del to expand the phenotype of "brain abnormalities, neurodegeneration, and dysosteosclerosis" (BANDDOS) and discuss its link with "adult leukoencephalopathy with axonal spheroids and pigmented glia" (ALSP), caused by heterozygous CSF1R variants. We evaluated medical, radiological, and laboratory findings and reviewed the literature. Patients presented with developmental delay, therapy-resistant epilepsy, dysmorphic features, and skeletal abnormalities. Secondary neurological decline occurred from 23 years in sibling one and from 20 years in sibling two. Brain imaging revealed multifocal white matter abnormalities and calcifications during initial disease in siblings two and three. Developmental brain anomalies, seen in all three, were most severe in sibling two. During neurological decline in siblings one and two, the leukoencephalopathy was progressive and had the MRI appearance of ALSP. Skeletal survey revealed osteosclerosis, most severe in sibling three. Blood markers, monocytes, dendritic cell subsets, and T-cell proliferation capacity were normal. Literature review revealed variable initial disease and secondary neurological decline. BANDDOS presents with variable dysmorphic features, skeletal dysplasia, developmental delay, and epilepsy with on neuro-imaging developmental brain anomalies, multifocal white matter abnormalities, and calcifications. Secondary neurological decline occurs with a progressive leukoencephalopathy, in line with early onset ALSP. Despite the role of CSF1R signaling in myeloid development, immune deficiency is absent. Phenotype varies within families; skeletal and neurological manifestations may be disparate.

2.
Cell Genom ; 4(7): 100602, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38944039

RESUMO

The phenotypic impact of compound heterozygous (CH) variation has not been investigated at the population scale. We phased rare variants (MAF ∼0.001%) in the UK Biobank (UKBB) exome-sequencing data to characterize recessive effects in 175,587 individuals across 311 common diseases. A total of 6.5% of individuals carry putatively damaging CH variants, 90% of which are only identifiable upon phasing rare variants (MAF < 0.38%). We identify six recessive gene-trait associations (p < 1.68 × 10-7) after accounting for relatedness, polygenicity, nearby common variants, and rare variant burden. Of these, just one is discovered when considering homozygosity alone. Using longitudinal health records, we additionally identify and replicate a novel association between bi-allelic variation in ATP2C2 and an earlier age at onset of chronic obstructive pulmonary disease (COPD) (p < 3.58 × 10-8). Genetic phase contributes to disease risk for gene-trait pairs: ATP2C2-COPD (p = 0.000238), FLG-asthma (p = 0.00205), and USH2A-visual impairment (p = 0.0084). We demonstrate the power of phasing large-scale genetic cohorts to discover phenome-wide consequences of compound heterozygosity.


Assuntos
Bancos de Espécimes Biológicos , Exoma , Heterozigoto , Fenótipo , Humanos , Reino Unido/epidemiologia , Exoma/genética , Predisposição Genética para Doença , Doença Pulmonar Obstrutiva Crônica/genética , Feminino , Masculino , Proteínas Filagrinas , Estudo de Associação Genômica Ampla , Asma/genética , Biobanco do Reino Unido
3.
Hum Reprod Open ; 2024(1): hoae003, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312775

RESUMO

STUDY QUESTION: Are there other pathogenic genes for asthenoteratozoospermia (AT)? SUMMARY ANSWER: DNAH3 is a novel candidate gene for AT in humans and mice. WHAT IS KNOWN ALREADY: AT is a major cause of male infertility. Several genes underlying AT have been reported; however, the genetic aetiology remains unknown in a majority of affected men. STUDY DESIGN SIZE DURATION: A total of 432 patients with AT were recruited in this study. DNAH3 mutations were identified by whole-exome sequencing (WES). Dnah3 knockout mice were generated using the genome editing tool. The morphology and motility of sperm from Dnah3 knockout mice were investigated. The entire study was conducted over 3 years. PARTICIPANTS/MATERIALS SETTING METHODS: WES was performed on 432 infertile patients with AT. In addition, two lines of Dnah3 knockout mice were generated. Haematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), immunostaining, and computer-aided sperm analysis (CASA) were performed to investigate the morphology and motility of the spermatozoa. ICSI was used to overcome the infertility of one patient and of the Dnah3 knockout mice. MAIN RESULTS AND THE ROLE OF CHANCE: DNAH3 biallelic variants were identified in three patients from three unrelated families. H&E staining revealed various morphological abnormalities in the flagella of sperm from the patients, and TEM and immunostaining further showed the loss of the central pair of microtubules, a dislocated mitochondrial sheath and fibrous sheath, as well as a partial absence of the inner dynein arms. In addition, the two Dnah3 knockout mouse lines demonstrated AT. One patient and the Dnah3 knockout mice showed good treatment outcomes after ICSI. LARGE SCALE DATA: N/A. LIMITATIONS REASONS FOR CAUTION: This is a preliminary report suggesting that defects in DNAH3 can lead to asthenoteratozoospermia in humans and mice. The pathogenic mechanism needs to be further examined in a future study. WIDER IMPLICATIONS OF THE FINDINGS: Our findings show that DNAH3 is a novel candidate gene for AT in humans and mice and provide crucial insights into the biological underpinnings of this disorder. The findings may also be beneficial for counselling affected individuals. STUDY FUNDING/COMPETING INTERESTS: This work was supported by grants from National Natural Science Foundation of China (82201773, 82101961, 82171608, 32322017, 82071697, and 81971447), National Key Research and Development Program of China (2022YFC2702604), Scientific Research Foundation of the Health Committee of Hunan Province (B202301039323, B202301039518), Hunan Provincial Natural Science Foundation (2023JJ30716), the Medical Innovation Project of Fujian Province (2020-CXB-051), the Science and Technology Project of Fujian Province (2023D017), China Postdoctoral Science Foundation (2022M711119), and Guilin technology project for people's benefit (20180106-4-7). The authors declare no competing interests.

4.
Int J Legal Med ; 138(4): 1233-1244, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38369682

RESUMO

The use of genetic markers, specifically Short Tandem Repeats (STRs), has been a valuable tool for identifying persons of interest. However, the ability to analyze additional markers including Single Nucleotide Polymorphisms (SNPs) and Insertion/Deletion (INDELs) polymorphisms allows laboratories to explore other investigative leads. INDELs were chosen in this study because large panels can be differentiated by size, allowing them to be genotyped by capillary electrophoresis. Moreover, these markers do not produce stutter and are smaller in size than STRs, facilitating the recovery of genetic information from degraded samples. The INDEL Ancestry Informative Markers (AIMs) in this study were selected from the 1000 Genomes Project based on a fixation index (FST) greater than 0.50, high allele frequency divergence, and genetic distance. A total of 25 INDEL-AIMs were optimized and validated according to SWGDAM guidelines in a five-dye multiplex. To validate the panel, genotyping was performed on 155 unrelated individuals from four ancestral groups (Caucasian, African, Hispanic, and East Asian). Bayesian clustering and principal component analysis (PCA) were performed revealing clear separation among three groups, with some observed overlap within the Hispanic group. Additionally, the PCA results were compared against a training set of 793 samples from the 1000 Genomes Project, demonstrating consistent results. Validation studies showed the assay to be reproducible, tolerant to common inhibitors, robust with challenging casework type samples, and sensitive down to 125 pg. In conclusion, our results demonstrated the robustness and effectiveness of a 25 loci INDEL system for ancestry inference of four ancestries commonly found in the United States.


Assuntos
Eletroforese Capilar , Mutação INDEL , Análise de Componente Principal , Grupos Raciais , Humanos , Grupos Raciais/genética , Marcadores Genéticos , Genótipo , Frequência do Gene , Teorema de Bayes , Genética Populacional , Impressões Digitais de DNA/métodos , Repetições de Microssatélites
5.
J Forensic Sci ; 69(3): 814-824, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38291825

RESUMO

DNA analysis of forensic case samples relies on short tandem repeats (STRs), a key component of the combined DNA index system (CODIS) used to identify individuals. However, limitations arise when dealing with challenging samples, prompting the exploration of alternative markers such as single nucleotide polymorphisms (SNPs) and insertion/deletion (INDELs) polymorphisms. Unlike SNPs, INDELs can be differentiated easily by size, making them compatible with electrophoresis methods. It is possible to design small INDEL amplicons (<200 bp) to enhance recovery from degraded samples. To this end, a set of INDEL Human Identification Markers (HID) was curated from the 1000 Genomes Project, employing criteria including a fixation index (FST) ≤ 0.06, minor allele frequency (MAF) >0.2, and high allele frequency divergence. A panel of 33 INDEL-HIDs was optimized and validated following the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines, utilizing a five-dye multiplex electrophoresis system. A small sample set (n = 79 unrelated individuals) was genotyped to assess the assay's performance. The validation studies exhibited reproducibility, inhibition tolerance, ability to detect a two-person mixture from a 4:1 to 1:6 ratio, robustness with challenging samples, and sensitivity down to 125 pg of DNA. In summary, the 33-loci INDEL-HID panel exhibited robust recovery with low-template and degraded samples and proved effective for individualization within a small sample set.


Assuntos
Impressões Digitais de DNA , Frequência do Gene , Mutação INDEL , Humanos , Impressões Digitais de DNA/métodos , Reprodutibilidade dos Testes , Marcadores Genéticos , Genótipo , Corantes Fluorescentes , Reação em Cadeia da Polimerase , Polimorfismo Genético , Eletroforese Capilar , Repetições de Microssatélites
6.
EBioMedicine ; 99: 104940, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154379

RESUMO

BACKGROUND: Pathogenic variants in the centrosome protein (CEP) family have been implicated in primary microcephaly, Seckel syndrome, and classical ciliopathies. However, most CEP genes remain unlinked to specific Mendelian genetic diseases in humans. We sought to explore the roles of CEP295 in human pathology. METHODS: Whole-exome sequencing was performed to screen for pathogenic variants in patients with severe microcephaly. Patient-derived fibroblasts and CEP295-depleted U2OS and RPE1 cells were used to clarify the underlying pathomechanisms, including centriole/centrosome development, cell cycle and proliferation changes, and ciliogenesis. Complementary experiments using CEP295 mRNA were performed to determine the pathogenicity of the identified missense variant. FINDINGS: Here, we report bi-allelic variants of CEP295 in four children from two unrelated families, characterized by severe primary microcephaly, short stature, developmental delay, intellectual disability, facial deformities, and abnormalities of fingers and toes, suggesting a Seckel-like syndrome. Mechanistically, depletion of CEP295 resulted in a decrease in the numbers of centrioles and centrosomes and triggered p53-dependent G1 cell cycle arrest. Moreover, loss of CEP295 causes extensive primary ciliary defects in both patient-derived fibroblasts and RPE1 cells. The results from complementary experiments revealed that the wild-type CEP295, but not the mutant protein, can correct the developmental defects of the centrosome/centriole and cilia in the patient-derived skin fibroblasts. INTERPRETATION: This study reports CEP295 as a causative gene of the syndromic microcephaly phenotype in humans. Our study also demonstrates that defects in CEP295 result in primary ciliary defects. FUNDING: A full list of funding bodies that contributed to this study can be found under "Acknowledgments."


Assuntos
Deficiência Intelectual , Microcefalia , Criança , Humanos , Ciclo Celular/genética , Centríolos/genética , Centríolos/metabolismo , Deficiência Intelectual/genética , Microcefalia/genética , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA