Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 17: 1342371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410694

RESUMO

Purpose: The TRAK1 gene is mapped to chromosome 3p22.1 and encodes trafficking protein kinesin binding 1. The aim of this study was to investigate the genotype-phenotype of TRAK1-associated epilepsy. Methods: Trio-based whole-exome sequencing was performed on a cohort of 98 patients with epilepsy of unknown etiologies. Protein modeling and the VarCards database were used to predict the damaging effects of the variants. Detailed neurological phenotypes of all patients with epilepsy having TRAK1 variants were analyzed to assess the genotype-phenotype correlations. Results: A novel TRAK1 compound heterozygous variant comprising variant c.835C > T, p.Arg279Cys and variant c.2560A > C, p.Lys854Gln was identified in one pediatric patient. Protein modeling and VarCards database analyses revealed that the variants were damaging. The patient received a diagnosis of early infantile epileptic spasms with a developmental disorder; he became seizure-free through valproate and adrenocorticotropic hormone treatment. Further results for six variants in 12 patients with epilepsy indicated that biallelic TRAK1 variants (including homozygous or compound heterozygous variants) were associated with epilepsy with developmental disorders. Among these patients, eight (67%) had epileptic spasms and seven (58%) were intractable to anti-seizure medicines. Moreover, eight patients experienced refractory status epilepticus, of which seven (88%) died in early life. To our knowledge, this is the first reported case of epilepsy caused by TRAK1 compound heterozygous variants. Conclusion: Biallelic TRAK1 variants can cause epilepsy and developmental disorders. In these patients, seizures progress to status epilepticus, suggesting a high risk for poor outcomes and the requirement of early treatment.

2.
Front Genet ; 13: 878274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571055

RESUMO

Intellectual disability (ID) has become very common and is an extremely heterogeneous disorder, where the patients face many challenges with deficits in intellectual functioning and adaptive behaviors. A single affected family revealed severe disease phenotypes such as ID, developmental delay, dysmorphic facial features, postaxial polydactyly type B, and speech impairment. DNA of a single affected individual was directly subjected to whole exome sequencing (WES), followed by Sanger sequencing. Data analysis revealed a novel biallelic missense variant (c.1511G>C; p.(Trp504Ser)) in the ALKBH8 gene, which plays a significant role in tRNA modifications. Our finding adds another variant to the growing list of ALKBH8-associated tRNA modifications causing ID and additional phenotypic manifestations. The present study depicts the key role of the genes associated with tRNA modifications, such as ALKBH8, in the development and pathophysiology of the human brain.

3.
Front Endocrinol (Lausanne) ; 12: 705773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539567

RESUMO

Background: The molecular etiology and the genotype-phenotype correlation of congenital hypothyroidism (CH) remain unclear. Methods: We performed genetic analysis in 42 newborns with CH using whole-exome sequencing. Patients were divided into a single-gene group and a multi-gene group according to the number of affected genes, or divided into a monoallelic group, a biallelic group, and an oligogenic group according to the pattern of the detected variants. The clinical characteristics were compared between groups. Results: Thyroid dysgenesis (TD) was observed in 10 patients and goiter in 5 patients, whereas 27 patients had normal-sized gland-in-situ (GIS). We identified 58 variants in five genes in 29 patients. The genes with the most frequent variants were DUOX2 (70.7%), followed by TSHR (12.1%), DUOXA2 (10.3%), and TPO (5.2%). Variants in the genes causing dyshormonogenesis (DH) were more common than those in the genes causing TD (87.9% versus 12.1%). Among the patients with detected variants, 26 (89.7%) were harboring a single gene variant (single-gene group), which include 22 patients harboring biallelic variants (biallelic group) and four patients harboring monoallelic variants (monoallelic group). Three (10.3%) patients harbored variants in two or three genes (multi-gene group or oligogenic group). Compared with the single-gene group, the levothyroxine (L-T4) dose at 1 year of age was higher in the multi-gene group (p = 0.018). A controllable reduction in the L-T4 dose was observed in 25% of patients in the monoallelic group and 59.1% of patients in the biallelic group; however, no patients with such reduction in the L-T4 dose were observed in the oligogenic group. Conclusions: Patients with normal-sized GIS accounted for the majority of our cohort. Genetic defects in the genes causing DH were more common than those in the genes causing TD, with biallelic variants in DUOX2 being dominant. DH might be the leading pathophysiology of CH in Chinese individuals.


Assuntos
Hipotireoidismo Congênito/patologia , Sequenciamento do Exoma/métodos , Estudos de Associação Genética , Testes Genéticos/métodos , Mutação , Criança , Pré-Escolar , Hipotireoidismo Congênito/tratamento farmacológico , Hipotireoidismo Congênito/genética , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Gravidez , Prognóstico , Tiroxina/uso terapêutico
4.
Front Genet ; 12: 685035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322155

RESUMO

OBJECTIVE: The cytochrome c oxidase assembly factor 7 (COA7) gene encodes a protein localized to mitochondria that is involved in the assembly of mitochondrial respiratory chain complex IV. Here, we report the clinical, genetic and biochemical analysis of a female patient with suspected mitochondrial disorder and novel variants in COA7, that presented with a considerably different phenotype and age of onset than the five COA7 patients reported to date. METHODS: We performed trio-exome sequencing in the affected patient and both parents. To verify the pathogenicity of the detected variants in COA7, mitochondrial enzyme activities and oxygen consumption rate were investigated in fibroblasts of the patient and her parents. RESULTS: A Chinese girl was referred at 9 months of age with a history of developmental delay and regression since 3 months of age. In the following months, she lost previously acquired skills and developed progressive spasticity of the lower extremities. Trio-exome sequencing revealed compound heterzygous variants in COA7 (c.511G > A/p.Ala171Thr and c.566A > G/p.Asn189Ser). Functional validation experiments revealed isolated complex IV deficiency and a significantly reduced mitochondrial respiration rate in patient-derived fibroblasts. INTERPRETATION: Hitherto, characteristic features of COA7 patients were described as slowly progressing neuropathy and spinocerebellar ataxia, starting at the toddler age and progressing into adulthood. In contrast, our patient was reported to show developmental delay from 3 months of age, which was found to be due to a rapidly progressive encephalopathy and brain atrophy seen at 9 months of age. Unexpectedly, the genetic investigation revealed a COA7-associated mitochondrial disease, which was confirmed functionally. Thus, this report broadens the genetic and clinical spectrum of this heterogeneous mitochondriopathy and highlights the value of the presented unbiased approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA