Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998913

RESUMO

This study explored the potential of a series of PZM21 analogues for pain treatment. Specifically, the hydroxyphenyl ring of PZM21 was replaced with a naphthyl ring, the thienyl ring was substituted with either a phenyl ring or furan rings, and the essential dimethylamine and urea groups were retained. These compounds aimed to enhance safety and minimize the adverse effects associated with opioid drugs. The research findings suggest that compound 6a does not induce ß-arrestin recruitment at low-nanomolar concentrations but exhibits significant analgesic effects in established mouse models. Compared to morphine, 6a shows advantages in alleviating respiratory depression and minimizing physical dependence. Molecular docking studies underscore the pivotal role of the D147 amino acid residue in the analgesic mechanism of 6a. Consequently, 6a is a compelling candidate for the development of safer opioid analgesics and warrants further attention.


Assuntos
Analgésicos Opioides , Simulação de Acoplamento Molecular , Receptores Opioides mu , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Animais , Camundongos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/química , Analgésicos Opioides/síntese química , Humanos , Relação Estrutura-Atividade , Dor/tratamento farmacológico , Masculino , Estrutura Molecular , Tiofenos , Ureia/análogos & derivados
2.
Eur J Med Chem ; 276: 116627, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971050

RESUMO

Kappa opioid receptor (KOR) agonists represent promising therapeutics for pain relief due to their analgesic properties along with lower abuse potential than opioids that act at the mu opioid receptor. However, typical KOR agonists produce sedation and dysphoria. Previous studies have shown that G protein signaling-biased KOR agonists may present a means to untangle the desired analgesic properties from undesired side effects. In this paper, we report a new series of G protein signaling-biased KOR agonists entailing -S- → -CH2- replacement in a previously reported KOR agonist, triazole 1.1. With an optimized carbon linker in hand, further development of the scaffold was undertaken to investigate the appendages of the triazole core. The structure-activity relationship study of this series is described, including several analogues that display enhanced potency while maintaining G protein-signaling bias compared to triazole 1.1.


Assuntos
Receptores Opioides kappa , Triazóis , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Relação Estrutura-Atividade , Humanos , Estrutura Molecular , Proteínas de Ligação ao GTP/metabolismo , Relação Dose-Resposta a Droga , Animais
3.
Biomedicines ; 12(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062125

RESUMO

Cannabielsoin (CBE) is primarily recognized as an oxidation byproduct of cannabidiol (CBD) and a minor mammalian metabolite of CBD. The pharmacological interactions between CBE and cannabinoid receptors remain largely unexplored, particularly with respect to cannabinoid receptor type 1 (CB1). The present study aimed to elucidate the interaction dynamics of CBE in relation to CB1 by employing cyclic adenosine monophosphate (cAMP) and ß-arrestin assays to assess its role as an agonist, antagonist, and positive allosteric modulator (PAM). To our knowledge, this is the first publication to investigate CBE's receptor activity in vitro. Our findings reveal that S-CBE acts as an agonist to CB1 with EC50 = 1.23 µg/mL (3.7 µM) in the cAMP assay. No agonist activity was observed in the ß-arrestin assay in concentrations up to 12 µM, suggesting a noteworthy affinity towards G-protein activation and the cAMP signaling pathway. Furthermore, in silico molecular docking simulations were conducted to provide a structural basis for the interaction between CBE and CB1, offering insights into the molecular determinants of its receptor affinity and functional selectivity.

4.
Neuropharmacology ; 258: 110092, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067666

RESUMO

Muscarinic acetylcholine receptors (mAChRs) are G protein-coupled receptors (GPCRs) that are activated by the endogenous neurotransmitter, acetylcholine (ACh). Disruption of mAChR signalling has been associated with a variety of neurological disorders and non-neurological diseases. Consequently, the development of agonists and antagonists of the mAChRs has been a major avenue in drug discovery. Unfortunately, mAChR ligands are often associated with on-target side effects for two reasons. The first reason is due to the high sequence conservation at the orthosteric ACh binding site among all five receptor subtypes (M1-M5), making on-target subtype selectivity a major challenge. The second reason is due to on-target side effects of mAChR drugs that are associated with the pleiotropic nature of mAChR signalling at the level of a single mAChR subtype. Indeed, there is growing evidence that within the myriad of signalling events produced by mAChR ligands, some will have therapeutic benefits, whilst others may promote cholinergic side effects. This paradigm of drug action, known as ligand bias or biased agonism, is an attractive feature for next-generation mAChR drugs, as it holds the promise of developing drugs devoid of on-target adverse effects. Although relatively simple to detect and even quantify in vitro, ligand bias, as observed in recombinant systems, does not always translate to in vivo systems, which remains a major hurdle in GPCR drug discovery, including the mAChR family. Here we report recent studies that have attempted to detect and quantify ligand bias at the mAChR family, and briefly discuss the challenges associated with biased agonist drug development. This article is part of the Special Issue on "Ligand Bias".


Assuntos
Receptores Muscarínicos , Humanos , Animais , Ligantes , Receptores Muscarínicos/metabolismo , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Descoberta de Drogas/métodos , Acetilcolina/metabolismo
5.
J Psychopharmacol ; 38(7): 661-671, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825869

RESUMO

BACKGROUND: The highly selective 5-HT1A serotonin receptor "biased" agonists NLX-101 and NLX-204 display, like ketamine, potent and efficacious rapid-acting antidepressant (RAAD) activity in the rat chronic mild stress (CMS) model with systemic (i.p.) administration. They rapidly (within 1 day) reverse anhedonia (i.e., CMS-induced sucrose consumption deficit), attenuate working memory deficit (novel object recognition: NOR), and decrease anxiety behavior in the elevated-plus maze (EPM). AIMS: Here, we sought to explore the contribution of prefrontal cortex (PFC) 5-HT1A receptor activation in the RAAD activity of NLX compounds. RESULTS/OUTCOMES: In male Wistar rats, unilateral PFC microinjections of NLX-204 and NLX-101 (16 µg), like ketamine (10 µg), reproduced the effects of their systemic administration: they reversed CMS-induced sucrose consumption deficit, attenuated anxiety (EPM), and reduced working memory deficits (NOR). In addition, unilateral PFC microinjections of the selective 5-HT1A antagonist, WAY-100,635 (2 µg), attenuated the beneficial effects of systemic NLX-204 and NLX-101 (0.16 mg/kg i.p.) in the sucrose intake and NOR models, indicating that these compounds exert their RAAD activity specifically through activation of PFC 5-HT1A receptors. CONCLUSIONS/INTERPRETATION: These data indicate that 5-HT1A receptor biased agonists share with ketamine a common neuroanatomical site for RAAD activity, which can be obtained not only by targeting glutamatergic/NMDA neurotransmission (ketamine's primary mechanism of action) but also by activating 5-HT1A receptors, as is the case for the NLX compounds. The present observations also reinforce the notion that biased agonism at 5-HT1A receptors constitutes a promising strategy to achieve RAAD effects, with additional benefits against cognitive deficits and anxiety in depressed patients, without ketamine's troublesome side effects.


Assuntos
Antidepressivos , Modelos Animais de Doenças , Ketamina , Ratos Wistar , Receptor 5-HT1A de Serotonina , Agonistas do Receptor 5-HT1 de Serotonina , Estresse Psicológico , Animais , Ketamina/farmacologia , Ketamina/administração & dosagem , Masculino , Ratos , Antidepressivos/farmacologia , Antidepressivos/administração & dosagem , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Anedonia/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Piridinas/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Piperazinas/farmacologia , Piperazinas/administração & dosagem , Depressão/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Piperidinas , Pirimidinas
6.
Biomed Pharmacother ; 177: 116965, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925019

RESUMO

BACKGROUND AND PURPOSE: GLP-1 receptor agonists are clinically utilized for type 2 diabetes and obesity. In vitro and in vivo preclinical studies were performed to assess the druggability of a novel small molecule GLP-1 receptor biased agonist SAL0112. EXPERIMENTAL APPROACH: The HTRF assay, FLIPR assay, TR-FRET assay, and PathHunter assay were utilized for in vitro studies. Liver transporter tests were conducted using the HEK293-OATP1B1 and HEK293-OATP1B3 cell lines. In vitro stability assessments of various species and in vivo PK studies in rodents were performed. A model of type 2 diabetes and obesity induced by a high-energy diet in transgenic C57BL/6 mice expressing the human GLP-1 receptor gene was conducted. PRINCIPAL RESULTS: SAL0112 demonstrated high potency and selectivity in activating the Gαs pathway of the GLP-1 receptor, with no observed desensitization. SAL0112 demonstrated greater stability in human and rat liver microsomes compared to Danuglipron. In vivo PK studies revealed higher absorption of SAL0112 in rats. SAL0112 displayed a significantly lower potential for DDI on liver transporters compared to Danuglipron. SAL0112 led to significant reductions in body weight (P<0.001), blood glucose levels in OGTT (P<0.001), HbA1c (P<0.05) and improved insulin resistance (P<0.01). Notably, it increased peripheral adipocyte density and resolved hepatic steatosis. The efficacy of SAL0112 was found to be comparable to that of Danuglipron and Liraglutide. CONCLUSION: SAL0112 demonstrated potent and selective GLP-1 receptor biased agonism, effectively alleviating signs of type 2 diabetes in a mouse model. These promising findings pave the way for the advancement of SAL0112 into clinical trials.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Camundongos Endogâmicos C57BL , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Masculino , Ratos , Células HEK293 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangue , Camundongos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/farmacocinética , Camundongos Transgênicos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Microssomos Hepáticos/metabolismo , Ratos Sprague-Dawley , Glicemia/efeitos dos fármacos , Glicemia/metabolismo
7.
J Oral Biosci ; 66(2): 447-455, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38336259

RESUMO

OBJECTIVES: Typical agonists of G protein-coupled receptors (GPCRs), including muscarinic acetylcholine receptors (mAChRs), activate both G-protein and ß-arrestin signaling systems, and are termed balanced agonists. In contrast, biased agonists selectively activate a single pathway, thereby offering therapeutic potential for the specific activation of that pathway. The mAChR agonists carbachol and pilocarpine are known to induce phosphorylation of extracellular signal-regulated kinase-1/2 (ERK1/2) via G-protein-dependent and -independent pathways, respectively. We investigated the involvement of ß-arrestin and its downstream mechanisms in the ERK1/2 phosphorylation induced by carbachol and pilocarpine in the human salivary ductal cell line, HSY cells. METHODS: HSY cells were stimulated with pilocarpine or carbachol, with or without various inhibitors. The cell lysates were analyzed by western blotting using the antibodies p44/p42MAPK and phosphor-p44/p42MAPK. RESULTS: Western blot analysis revealed that carbachol elicited greater stimulation of ERK1/2 phosphorylation compared to pilocarpine. ERK1/2 phosphorylation was inhibited by atropine and gefitinib, suggesting that mAChR activation induces transactivation of epidermal growth factor receptors (EGFR). Moreover, inhibition of carbachol-mediated ERK1/2 phosphorylation was achieved by GF-109203X (a PKC inhibitor), a ßARK1/GRK2 inhibitor, barbadin (a ß-arrestin inhibitor), pitstop 2 (a clathrin inhibitor), and dynole 34-2 (a dynamin inhibitor). In contrast, pilocarpine-mediated ERK1/2 phosphorylation was only inhibited by barbadin (a ß-arrestin inhibitor) and PP2 (a Src inhibitor). CONCLUSION: Carbachol activates both G-protein and ß-arrestin pathways, whereas pilocarpine exclusively activates the ß-arrestin pathway. Additionally, downstream of ß-arrestin, carbachol activates clathrin-dependent internalization, while pilocarpine activates Src.


Assuntos
Carbacol , Agonistas Muscarínicos , Pilocarpina , Receptores Muscarínicos , Transdução de Sinais , Humanos , Fosforilação/efeitos dos fármacos , Receptores Muscarínicos/metabolismo , Pilocarpina/farmacologia , Carbacol/farmacologia , Agonistas Muscarínicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ductos Salivares/metabolismo , beta-Arrestinas/metabolismo , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Western Blotting , Arrestinas/metabolismo
8.
ACS Chem Neurosci ; 15(3): 685-698, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265210

RESUMO

Structure-activity relationship studies led to the discovery of PIPE-3297, a fully efficacious and selective kappa opioid receptor (KOR) agonist. PIPE-3297, a potent activator of G-protein signaling (GTPγS EC50 = 1.1 nM, 91% Emax), did not elicit a ß-arrestin-2 recruitment functional response (Emax < 10%). Receptor occupancy experiments performed with the novel KOR radiotracer [3H]-PIPE-3113 revealed that subcutaneous (s.c.) administration of PIPE-3297 at 30 mg/kg in mice achieved 90% occupancy of the KOR in the CNS 1 h post dose. A single subcutaneous dose of PIPE-3297 in healthy mice produced a statistically significant increase of mature oligodendrocytes (P < 0.0001) in the KOR-enriched striatum, an effect that was not observed in animals predosed with the selective KOR antagonist norbinaltorphimine. An equivalent dose given to mice in an open-field activity-monitoring system revealed a small KOR-independent decrease in total locomotor activity versus vehicle measured between 60 and 75 min post dose. Daily doses of PIPE-3297 at both 3 and 30 mg/kg s.c. reduced the disease score in the mouse experimental autoimmune encephalomyelitis (EAE) model. Visually evoked potential (VEP) N1 latencies were also significantly improved versus vehicle in both dose groups, and latencies matched those of untreated animals. Taken together, these findings highlight the potential therapeutic value of functionally selective G-protein KOR agonists in demyelinating disease, which may avoid the sedating side effects typically associated with classical nonbiased KOR agonists.


Assuntos
Receptores Opioides kappa , Transdução de Sinais , Camundongos , Animais , beta-Arrestina 2/farmacologia , Receptores Opioides kappa/agonistas , Proteínas de Ligação ao GTP/metabolismo , Antagonistas de Entorpecentes/farmacologia , Analgésicos Opioides/farmacologia
9.
Br J Pharmacol ; 181(4): 564-579, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-36694432

RESUMO

BACKGROUND AND PURPOSE: Platelet function during inflammation is dependent on activation by endogenous nucleotides. Non-canonical signalling via the P2Y1 receptor is important for these non-thrombotic functions of platelets. However, apart from ADP, the role of other endogenous nucleotides acting as agonists at P2Y1 receptors is unknown. This study compared the effects of ADP, Ap3A, NAD+ , ADP-ribose, and Up4A on platelet functions contributing to inflammation or haemostasis. EXPERIMENTAL APPROACH: Platelets obtained from healthy human volunteers were incubated with ADP, Ap3A, NAD+ , ADP-ribose, or Up4A, with aggregation and fibrinogen binding measured (examples of function during haemostasis) or before exposure to fMLP to measure platelet chemotaxis (an inflammatory function). In silico molecular docking of these nucleotides to the binding pocket of P2Y1 receptors was then assessed. KEY RESULTS: Platelet aggregation and binding to fibrinogen induced by ADP was not mimicked by NAD+ , ADP-ribose, and Up4A. However, these endogenous nucleotides induced P2Y1 -dependent platelet chemotaxis, an effect that required RhoA and Rac-1 activity, but not canonical PLC activity. Analysis of molecular docking of the P2Y1 receptor revealed distinct differences of amino acid interactions and depth of fit within the binding pocket for Ap3A, NAD+ , ADP-ribose, or Up4A compared with ADP. CONCLUSION AND IMPLICATIONS: Platelet function (aggregation vs motility) can be differentially modulated by biased-agonist activation of P2Y1 receptors. This may be due to the character of the ligand-binding pocket interaction. This has implications for future therapeutic strategies aimed to suppress platelet activation during inflammation without affecting haemostasis as is the requirement of current ant-platelet drugs. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Assuntos
Plaquetas , NAD , Humanos , Simulação de Acoplamento Molecular , NAD/metabolismo , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Agregação Plaquetária , Inflamação/metabolismo , Fibrinogênio/metabolismo , Fibrinogênio/farmacologia , Adenosina Difosfato Ribose/metabolismo , Adenosina Difosfato Ribose/farmacologia , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo
10.
Pharmacol Res ; 199: 107047, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157998

RESUMO

The 5-hydroxytryptamine 7 receptor (5-HT7) is necessary for 5-HT to cause a concentration-dependent vascular relaxation and hypotension. 5-HT7 is recognized as having biased signaling, transduced through either Gs or ß -arrestin. It is unknown whether 5-HT7 signals in a biased manner to cause vasorelaxation/hypotension. We used the recently described ß-arrestin selective 5-HT7 receptor agonist serodolin to test the hypothesis that 5-HT7 activation does not cause vascular relaxation or hypotension via the ß -arrestin pathway. Isolated abdominal aorta (no functional 5-HT7) and vena cava (functional 5-HT7) from male Sprague Dawley rats were used in isometric contractility studies. Serodolin (1 nM - 10 µM) did not change baseline tone of isolated tissues and did not relax the endothelin-1 (ET-1)-contracted vena cava or aorta. In the aorta, serodolin acted as a 5-HT2A receptor antagonist, evidenced by a rightward shift in 5-HT-induced concentration response curve [pEC50 5-HT [M]: Veh = 5.2 +/- 0.15; Ser (100 nM) = 4.49 +/- 0.08; p < 0.05]. In the vena cava, serodolin acted as a 5-HT7 receptor antagonist, shifting the concentration response curve to 5-HT left and upward (%10 µM NE contraction; Veh = 3.2 +/- 1.7; Ser (10 nM) = 58 +/- 11; p < 0.05) and blocking relaxation of pre-contracted tissue to the 5-HT1A/7 agonist 5-carboxamidotryptamine. In anesthetized rats, 5-HT or serodolin was infused at 5, 25 and 75 µg/kg/min, iv. Though 5-HT caused concentration-dependent depressor responses, serodolin caused an insignificant small depressor responses at all three infusion rates. With the final dose of serodolin on board, 5-HT was unable to reduce blood pressure. Collectively the data indicate that serodolin functions as a 5-HT7 antagonist with additional 5-HT2A blocking properties. 5-HT7 activation does not cause vascular relaxation or hypotension via the ß -arrestin pathway.


Assuntos
Hipotensão , Serotonina , Ratos , Animais , Masculino , Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , beta-Arrestinas , Ratos Sprague-Dawley
11.
Front Pharmacol ; 14: 1218380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601058

RESUMO

Opiates produce analgesia via G-protein signaling, and adverse effects, such as respiratory depression and decreased bowel motility, by ß-arrestin pathway. Oliceridine, a G protein-biased MOR agonist, only presents modest safety advantages as compared to other opiates in clinical trials, possibly due to its limited bias. Our previous study shown that LPM3480392, a full MOR biased agonist, is selective for the Gi pathway over the ß-arrestin-2. In the present article, we evaluated the subacute toxicity of LPM3480392 in rats. The rats were administered with control article or LPM3480392 0.6, 1.2 or 2.4 mg/kg/day for 4 consecutive weeks followed by a 4-week recovery phase. Intravenous infusion was conducted at tail vein at 0.2, 0.4 or 0.8 mg/kg/day with a dosing volume of 10 mL/kg and 5 min/rat/dose, three times a day with an interval of approximately 4 h. The concomitant toxicokinetics study was conducted. Two unscheduled rats at 2.4 mg/kg/day died with no clear cause. For the scheduled necropsy, the major effects were associated with the MOR agonist-related pharmacodynamic properties of LPM3480392 (e.g., increased activity, increased muscle tone; decreased food consumption and body weight gain; and clinical chemistry changes related with decreased food consumption) in three LPM3480392 groups. In addition, LPM3480392 at 2.4 mg/kg/day also induced deep respiration and histopathology changes in testis and epididymis in sporadic individual rats. However, different from other opiates, LPM3480392 presents weak/no immunosuppression and the decreased adrenal gland weight, which may be due to LPM3480392' full MOR bias. At the end of recovery phase, all findings were recovered to some extent or completely. In the toxicokinetics study, the dose-dependent elevation of drug exposure was observed, which partly explained the toxicity of high dose. In summary, LPM3480392 has exhibited good safety characteristics in this subacute toxicity study in rats.

12.
Neuroimage Clin ; 39: 103497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37632990

RESUMO

INTRODUCTION: The leading treatment for motor signs of Parkinson's disease is L-DOPA, but, upon extended use, it can lead to levodopa-induced dyskinesia (LID). Serotonergic neurons are involved in LID etiology and previous pre-clinical studies have shown that NLX-112, a 5-HT1A biased agonist, has robust antidyskinetic effects. Here, we investigated its effects in hemiparkinsonian (HPK) rats with a unilateral nigrostriatal 6-OHDA lesion. METHODS: We compared HPK rats with LID (i.e., sensitized to the dyskinetic effects of chronic L-DOPA) and without LID (HPK-non-LID), using [18F]FDG PET imaging and fMRI functional connectivity following systemic treatment with saline, L-DOPA, NLX-112 or L-DOPA + NLX-112. RESULTS: In HPK-non-LID rats, [18F]FDG PET experiments showed that L-DOPA led to hypermetabolism in motor areas (cerebellum, brainstem, and mesencephalic locomotor region) and to hypometabolism in cortical regions. L-DOPA effects were also observed in HPK-LID rats, with the additional emergence of hypermetabolism in raphe nuclei and hypometabolism in hippocampus and striatum. NLX-112 attenuated L-DOPA-induced raphe hypermetabolism and cingulate cortex hypometabolism in HPK-LID rats. Moreover, in fMRI experiments NLX-112 partially corrected the altered neural circuit connectivity profile in HPK-LID rats, through activity in regions rich in 5-HT1A receptors. CONCLUSION: This neuroimaging study sheds light for the first time on the brain activation patterns of HPK-LID rats. The 5-HT1A receptor agonist, NLX-112, prevents occurrence of LID, likely by activating pre-synaptic autoreceptors in the raphe nuclei, resulting in a partial restoration of brain metabolic and connectivity profiles. In addition, NLX-112 also rescues L-DOPA-induced deficits in cortical activation, suggesting potential benefit against non-motor symptoms of Parkinson's disease.


Assuntos
Discinesias , Doença de Parkinson , Animais , Ratos , Levodopa/efeitos adversos , Receptor 5-HT1A de Serotonina , Fluordesoxiglucose F18 , Serotonina , Imagem Multimodal
13.
Psychopharmacology (Berl) ; 240(11): 2419-2433, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37310446

RESUMO

OBJECTIVES: NLX-101 and NLX-204 are highly selective serotonin 5-HT1A 'biased' agonists, displaying potent and efficacious antidepressant-like activity upon acute administration in models such as the forced swim test. METHODS: we compared the effects of repeated administration of NLX-101, NLX-204 and ketamine in the chronic mild stress (CMS) model of depression, considered to have high translational potential, on sucrose consumption (anhedonia measure), novel object recognition (NOR; working memory measure) and elevated plus maze (EPM; anxiety measure) in male Wistar and Wistar-Kyoto rats (the latter being resistant to classical antidepressants). RESULTS: in Wistar rats, NLX-204 and NLX-101 (0.08-0.16 mg/kg i.p.), like ketamine (10 mg/kg i.p.) dose-dependently reversed CMS-induced sucrose intake deficit from treatment Day 1, with nearly full reversal observed at the higher dose at Days 8 and 15. These effects persisted for 3 weeks following treatment cessation. In the NOR test, both doses of NLX-101/NLX-204, and ketamine, rescued the deficit in discrimination index caused by CMS on Days 3 and 17; all three compounds increased time spent in open arms (EPM) but only NLX-204 achieved statistical significance on Days 2 and 16. In Wistar-Kyoto rats, all 3 compounds were also active in the sucrose test and, to a lesser extent, in the NOR and EPM. In non-stressed rats (both strains), the three compounds produced no significant effects in all tests. CONCLUSIONS: these observations further strengthen the hypothesis that biased agonism at 5-HT1A receptors constitutes a promising strategy to achieve rapid-acting/sustained antidepressant effects combined with activity against TRD, in addition to providing beneficial effects against memory deficit and anxiety in depressed patients.


Assuntos
Ketamina , Humanos , Ratos , Masculino , Animais , Ketamina/farmacologia , Receptor 5-HT1A de Serotonina , Serotonina , Ratos Endogâmicos WKY , Agonistas do Receptor 5-HT1 de Serotonina , Antidepressivos/farmacologia , Agonistas do Receptor de Serotonina , Ratos Wistar , Sacarose
14.
Acta Pharm Sin B ; 13(1): 82-99, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36815042

RESUMO

Opioids are the most effective painkillers, but their benefit-risk balance often hinder their therapeutic use. WLB-73502 is a dual, bispecific compound that binds sigma-1 (S1R) and mu-opioid (MOR) receptors. WLB-73502 is an antagonist at the S1R. It behaved as a partial MOR agonist at the G-protein pathway and produced no/unsignificant ß-arrestin-2 recruitment, thus demonstrating low intrinsic efficacy on MOR at both signalling pathways. Despite its partial MOR agonism, WLB-73502 exerted full antinociceptive efficacy, with potency superior to morphine and similar to oxycodone against nociceptive, inflammatory and osteoarthritis pain, and superior to both morphine and oxycodone against neuropathic pain. WLB-73502 crosses the blood-brain barrier and binds brain S1R and MOR to an extent consistent with its antinociceptive effect. Contrary to morphine and oxycodone, tolerance to its antinociceptive effect did not develop after repeated 4-week administration. Also, contrary to opioid comparators, WLB-73502 did not inhibit gastrointestinal transit or respiratory function in rats at doses inducing full efficacy, and it was devoid of proemetic effect (retching and vomiting) in ferrets at potentially effective doses. WLB-73502 benefits from its bivalent S1R antagonist and partial MOR agonist nature to provide an improved antinociceptive and safety profile respect to strong opioid therapy.

15.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615540

RESUMO

The κ-opioid receptor (KOR) has recently emerged as an alternative therapeutic target for the development of pain medications, without deleterious side effects associated with the µ-opioid receptor (MOR). However, modulation of KOR is currently under investigation for the treatment of depression, mood disorders, psychiatric comorbidity, and specific drug addictions. However, KOR agonists also trigger adverse effects including sedation, dysphoria, and hallucinations. In this respect, there is currently much debate on alternative paradigms. Recent effort has been devoted in search of biased ligands capable of selectively activating favorable signaling over signaling associated with unwanted side effects. On the other hand, the use of partial agonists is expected to allow the analgesia to be produced at dosages lower than those required to produce the adverse effects. More empirically, the unwanted central effects can be also avoided by using peripherally restricted agonists. In this review, we discuss the more recent trends in the design of KOR-selective, biased or partial, and finally, peripherally acting agonists. Special emphasis is given on the discussion of the most recent approaches for controlling functional selectivity of KOR-specific ligands.


Assuntos
Analgesia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Ligantes , Dor/tratamento farmacológico , Receptores Opioides kappa/agonistas , Transdução de Sinais , Analgésicos Opioides/efeitos adversos
16.
Cell Rep ; 42(1): 112015, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36680775

RESUMO

Nuclear magnetic resonance (NMR) studies have revealed that fast methyl sidechain dynamics can report on entropically-driven allostery. Yet, NMR applications have been largely limited to the super-microsecond motional regimes of G protein-coupled receptors (GPCRs). We use 13Cε-methionine chemical shift-based global order parameters to test if ligands affect the fast dynamics of a thermostabilized GPCR, neurotensin receptor 1 (NTS1). We establish that the NTS1 solution ensemble includes substates with lifetimes on several, discrete timescales. The longest-lived states reflect those captured in agonist- and inverse agonist-bound crystal structures, separated by large energy barriers. We observe that the rapid fluctuations of individual methionine residues, superimposed on these long-lived states, respond collectively with the degree of fast, global dynamics correlating with ligand pharmacology. This approach lends confidence to interpreting spectra in terms of local structure and methyl dihedral angle geometry. The results suggest a role for sub-microsecond dynamics and conformational entropy in GPCR ligand discrimination.


Assuntos
Receptores de Neurotensina , Humanos , Agonismo Inverso de Drogas , Ligantes , Metionina , Ligação Proteica , Conformação Proteica , Receptores de Neurotensina/química , Receptores de Neurotensina/metabolismo
17.
J Comput Aided Mol Des ; 37(2): 91-105, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459325

RESUMO

G protein-coupled receptors (GPCRs) are membrane proteins constituting the largest family of drug targets. The activated GPCR binds either the heterotrimeric G proteins or arrestin through its activation cycle. Water molecules have been reported to play a role in GPCR activation. Nevertheless, reported studies are focused on the hydrophobic helical bundle region. How water molecules function in GPCR bound either G protein or arrestin is rarely studied. To address this issue, we carried out computational studies on water molecules in both GPCR/G protein complexes and GPCR/arrestin complexes. Using inhomogeneous fluid theory (IFT), we locate all possible hydration sites in GPCRs binding either to G protein or arrestin. We observe that the number of water molecules on the interaction surface between GPCRs and signal proteins are correlated with the insertion depths of the α5-helix from G-protein or "finger loop" from arrestin in GPCRs. In three out of the four simulation pairs, the interfaces of Rhodopsin, M2R and NTSR1 in the G protein-associated systems show more water-mediated hydrogen-bond networks when compared to these in arrestin-associated systems. This reflects that more functionally relevant water molecules may probably be attracted in G protein-associated structures than that in arrestin-associated structures. Moreover, we find the water-mediated interaction networks throughout the NPxxY region and the orthosteric pocket, which may be a key for GPCR activation. Reported studies show that non-biased agonist, which can trigger both GPCR-G protein and GPCR-arrestin activation signal, can result in pharmacologically toxicities. Our comprehensive studies of the hydration sites in GPCR/G protein complexes and GPCR/arrestin complexes may provide important insights in the design of G-protein biased agonists.


Assuntos
Arrestina , Água , Arrestina/química , Arrestina/metabolismo , Água/metabolismo , Receptores Acoplados a Proteínas G/química , Proteínas de Ligação ao GTP/metabolismo , Rodopsina/química , Rodopsina/metabolismo
18.
Psychiatr Clin North Am ; 45(3): 415-430, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36055730

RESUMO

Kratom is the common term for Mitragyna speciosa and its products. Its major active compounds are mitragynine and 7-hydroxymitragynine. An estimated 2.1 million US residents used kratom in 2020, as a "legal high" and self-medication for pain, opioid withdrawal, and other conditions. Up to 20% of US kratom users report symptoms consistent with kratom use disorder. Kratom use is associated with medical toxicity and death. Causality is difficult to prove as almost all cases involve other psychoactive substances. Daily, high-dose use may result in kratom use disorder and opioid-like withdrawal on cessation of use. These are best treated with buprenorphine.


Assuntos
Mitragyna , Síndrome de Abstinência a Substâncias , Analgésicos Opioides , Humanos , Extratos Vegetais/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológico
19.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887157

RESUMO

Signaling bias is a promising characteristic of G protein-coupled receptors (GPCRs) as it provides the opportunity to develop more efficacious and safer drugs. This is because biased ligands can avoid the activation of pathways linked to side effects whilst still producing the desired therapeutic effect. In this respect, a deeper understanding of receptor dynamics and implicated allosteric communication networks in signaling bias can accelerate the research on novel biased drug candidates. In this review, we aim to provide an overview of computational methods and techniques for studying allosteric communication and signaling bias in GPCRs. This includes (i) the detection of allosteric communication networks and (ii) the application of network theory for extracting relevant information pipelines and highly communicated sites in GPCRs. We focus on the most recent research and highlight structural insights obtained based on the framework of allosteric communication networks and network theory for GPCR signaling bias.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Regulação Alostérica , Sítio Alostérico , Ligantes , Receptores Acoplados a Proteínas G/metabolismo
20.
Front Pharmacol ; 13: 837671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795569

RESUMO

Kappa-opioid receptors (KOR) are widely expressed throughout the central nervous system, where they modulate a range of physiological processes depending on their location, including stress, mood, reward, pain, inflammation, and remyelination. However, clinical use of KOR agonists is limited by adverse effects such as dysphoria, aversion, and sedation. Within the drug-development field KOR agonists have been extensively investigated for the treatment of many centrally mediated nociceptive disorders including pruritis and pain. KOR agonists are potential alternatives to mu-opioid receptor (MOR) agonists for the treatment of pain due to their anti-nociceptive effects, lack of abuse potential, and reduced respiratory depressive effects, however, dysphoric side-effects have limited their widespread clinical use. Other diseases for which KOR agonists hold promising therapeutic potential include pruritis, multiple sclerosis, Alzheimer's disease, inflammatory diseases, gastrointestinal diseases, cancer, and ischemia. This review highlights recent drug-development efforts targeting KOR, including the development of G-protein-biased ligands, mixed opioid agonists, and peripherally restricted ligands to reduce side-effects. We also highlight the current KOR agonists that are in preclinical development or undergoing clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA