Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 678(Pt A): 201-208, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39191099

RESUMO

HYPOTHESIS: Functionalizing colloidal particles with oppositely charged surfactants is crucial for stabilizing emulsions, foams, all-liquid structures, and bijels. However, surfactants can reduce the attachment energy, the driving force for colloidal self-assembly at interfaces. An open question remains on how the inherent interfacial activity of cationic surfactants influences the interfacial rigidity of particle-laden interfaces. We hypothesize that charge screening among cationic surfactants regulates the rigidity of oil/water interfaces by reducing the attachment energy of nanoparticles. EXPERIMENTS: We investigate the interfacial rigidity of cetyltrimethylammonium bromide (CTAB) functionalized silica nanoparticles (Ludox® TMA) by analyzing the shape deformation of 1,4-butanediol diacrylate (BDA) droplets under varying salt and alcohol concentrations. The nanoparticle packing density is assessed using scanning electron microscopy. Attachment energy is characterized through interfacial tension measurements, three-phase contact angle analysis, and CTAB adsorption studies. We also examine the effects of interfacial rigidities on the structure of bijel films formed via roll-to-roll solvent transfer-induced phase separation (R2R-STrIPS) using confocal laser scanning microscopy. FINDINGS: Increasing salt and alcohol concentrations decrease the interfacial rigidity of CTAB-functionalized nanoparticle films by reducing the interfacial tension. The contact angle has a minor influence on the rigidity. These results indicate that CTAB charge screening weakens the nanoparticle attachment energy to the interface. Controlling the rigidity enables the mass production of bijel sheets with consistent flatness, which is crucial for their potential applications in catalysis, energy storage, tissue engineering, and filtration membranes.

2.
Adv Sci (Weinh) ; : e2406223, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162178

RESUMO

Nanoparticle-stabilized, bicontinuous interfacially jammed emulsion gels (bijels) find potential applications as battery, separation membrane, and chemical reactor materials. Decreasing the liquid domain sizes of bijels to sub-micrometer dimensions requires surfactants, complicating bijel synthesis and postprocessing into functional nanomaterials. This work introduces surfactant-free bijels with sub-micrometer domains, solely stabilized by nanoparticles. To this end, the covalent surface functionalization of silica nanoparticles is characterized by thermogravimetric analysis, mass spectrometry, Fourier-transform infrared spectroscopy, and contact angle measurements. Bijels are generated with the functionalized nanoparticles via solvent transfer induced phase separation (STrIPS), enabling the optimization of nanoparticle functionalization and surface ionization. Nanoparticles of intermediate functionalization and controlled negative surface charge stabilize bijels with sub-micrometer liquid domains. This remarkable control over bijel synthesis provides urgently needed progress to facilitate the widespread implementation of bijels as nanomaterials in research and applications.

3.
Macromol Biosci ; : e2400084, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733249

RESUMO

The targeted delivery of drugs using wireless navigable magnetic robots allows the delivery of drug molecules to be controlled non only in time but also in space, improving medical outcomes. The main disadvantages behind their use lies in the low amount of drug that can be transported and the single nature of drug that can be loaded (hydrophilic or hydrophobic). These considerations limit their use in co-delivery systems, now recognized to be very promising for many different pathologies. A magnetic bijel-like structure is developed to load and release different types of molecules (hydrophilic and hydrophobic). In this work, the use of ε-caprolactone is explored, which can polymerize, forming hydrophobic domains (oil phase). After mixing with iron oxide nanoparticles (NPs), the water dispersion creates a magnetic biphasic porous structure without phase separation. The resulting device shows good performance both in magnetic actuation and as a drug delivery system.

4.
Nanomaterials (Basel) ; 14(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607109

RESUMO

Bicontinuous interfacially jammed emulsion gels, also known as Bijels, are a new type of soft condensed matter. Over the last decade, Bijels have attracted considerable attention because of their unique morphology, property, and broad application prospects. In the present review, we summarize the preparation methods and main control strategies of Bijels, focusing on the research progress and application of Bijels as templates for porous materials preparation in recent years. The potential future directions and applications of Bijels are also envisaged.

5.
Gels ; 10(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38247794

RESUMO

Bijels are a peculiar type of Pickering emulsion that have a bicontinuous morphology and are stabilised by a jammed layer of nanoparticles (NPs). Due to their double nature, their usage has increased in recent years in various fields, such as biological and food applications. In fact, they can release both hydrophilic and hydrophobic compounds simultaneously. An improvement to this structure is the use of a hydrophobic monomer like polycaprolactone as the organic phase, which is able to polymerise during the formation of the structure. Unfortunately, the structures formed in this way always have some drawbacks, such as their thermal stability or degradation when submerged in an aqueous medium. A number of studies have been carried out in which some parameters, such as the NPs or the monomer, were changed and their effect on the final product evaluated. In this work, the effect of modifying the aqueous phase was studied. In particular, the effect of adding alginate, a biopolymer capable of forming a stable hydrogel in the presence of divalent cations, was analysed, as was the difference between soaking or not in CaCl2, the final system. Specific attention was paid to their swelling behaviour (150% vs. 25% of the blank sample), rheological properties (G' 100 kPa vs. 20 kPa of the blank sample) and their release performances. In this framework, complete release of hydrophilic drug vs. 20% in the blank sample was observed together with improved release of the hydrophobic one with 35% in 8 h vs. 5% in the case of the blank sample. This strategy has been proven to influence bijels' properties, opening the doors to many different uses.

6.
ACS Appl Mater Interfaces ; 15(41): 48716-48724, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37812501

RESUMO

Passive daytime radiative cooling (PDRC) relies on simultaneous reflection of sunlight and radiation toward cold outer space. Current designs of PDRC coatings have demonstrated potential as eco-friendly alternatives to traditional electrical air conditioning (AC). While many features of PDRC have been individually optimized in different studies, for practical impact, it is essential for a system to demonstrate excellence in all essential aspects, like the materials that nature has created. We propose a bioinspired PDRC structure templated by bicontinuous interfacially jammed emulsion gels (bijels) that possesses excellent cooling, thinness, tunability, scalability, and mechanical robustness. The unique bicontinuous disordered structure captures key features of Cyphochilus beetle scales, enabling a thin (130 µm) bijel PDRC coating to achieve high solar reflectance (≳0.97) and high longwave-infrared (LWIR) emissivity (≳0.93), resulting in a subambient temperature drop of ∼5.6 °C under direct sunlight. We further demonstrate switchable cooling inspired by the exoskeleton of the Hercules beetle and mechanical robustness in analogy to spongy bone structures.

7.
Adv Mater ; 34(18): e2109547, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35305279

RESUMO

Fluid-bicontinuous gels are unique materials that allow two distinct fluids to interact through a percolating, rigid scaffold. Current restrictions for their use are the large fluid-channel sizes (>5 µm), limiting the fluid-fluid interaction surface-area, and the inability to flow liquids through the channels. In this work a scalable synthesis route of nanoparticle stabilized fluid-bicontinuous gels with channels sizes below 500 nm and specific surface areas of 2 m2 cm-3 is introduced. Moreover, it is demonstrated that liquids can be pumped through the fluid-bicontinuous gels via electroosmosis. The fast liquid flow in the fluid-bicontinuous gel facilitates their use for molecular separations in continuous-flow liquid-liquid extraction. Together with the high surface areas, liquid flow through fluid-bicontinuous gels enhances their potential as highly permeable porous materials with possible uses as microreaction media, fuel-cell components, and separation membranes.

8.
Nanomaterials (Basel) ; 10(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085639

RESUMO

Oil/water emulsions are usually stabilized either by interfacial modification using nanoparticles and surfactants (stated as pickering emulsion or bijels) or by bulk stabilization with the help of low-molecular-weight or polymeric gelators (known as bigels) in response to some external stimuli (e.g., pH, temperature). Both these approaches result in different systems that are quite useful for different applications, including catalysis, pharmaceutical and agrochemicals. However, these systems also possess some inherent drawbacks that need to be addressed, like difficulty in fabrication and ensuring the permanent binding of nanoparticles at the oil/water interface, in case of nanoparticles stabilized emulsions (i.e., interfacial stabilization). Similarly, the long-term stability of the oil/water systems produced by using (hydro/organo) gelators (i.e., bulk stabilization) is a major concern. Here, we show that the oil/water system with improved mechanical and structural properties can be prepared with the synergistic effect of interfacial and bulk stabilization. We achieve this by using nanoparticles to stabilize the oil/water interface and polymeric gelators to stabilize the bulk phases (oil and water). Furthermore, the proposed strategy is extremely adaptable, as the properties of the resultant system can be finely tuned by manipulating different parameters such as nanoparticles content and their surface functionalization, solvent type and its volume fraction, and type and amount of polymeric gelators.

9.
ACS Nano ; 10(6): 6338-44, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27227507

RESUMO

Bijels are a class of soft materials with potential for application in diverse areas including healthcare, food, energy, and reaction engineering due to their unique structural, mechanical, and transport properties. To realize their potential, means to fabricate, characterize, and manipulate bijel mechanics are needed. We recently developed a method based on solvent transfer-induced phase separation (STRIPS) that enables continuous fabrication of hierarchically structured bijel fibers from a broad array of constituent fluids and nanoparticles using a microfluidic platform. Here, we introduce an in situ technique to characterize bijel fiber mechanics at initial and final stages of the formation process within a microfluidics device. By manipulation of the hydrodynamic stresses applied to the fiber, the fiber is placed under tension until it breaks into segments. Analysis of the stress field allows fracture strength to be inferred; fracture strengths can be as high as several thousand Pa, depending on nanoparticle content. These findings broaden the potential for the use of STRIPS bijels in applications with different mechanical demands. Moreover, our in situ mechanical characterization method could potentially enable determination of properties of other soft fibrous materials made of hydrogels, capillary suspensions, colloidal gels, or high internal phase emulsions.

10.
Adv Mater ; 27(44): 7065-71, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26437299

RESUMO

Continuous generation of hierarchical and asymmetric bijels based on solvent-transfer-induced phase separation (STRIPS) is demonstrated. In STRIPS, phase separation is induced by solvent extraction from an initially homogeneous ternary mixture, and bicontinuous morphology is stabilized by inter-facial attachment of nano-particles, which are functionalized in situ. STRIPS allows stable bijel formation from a wide variety of liquids and particles.


Assuntos
Membranas Artificiais , Microesferas , Microtecnologia , Solventes/química , Géis , Modelos Moleculares , Conformação Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA