RESUMO
To date little is known about the genetic background that drives the production and diversification of secondary metabolites in the Hypoxylaceae. With the recent availability of high-quality genome sequences for 13 representative species and one relative (Xylaria hypoxylon) we attempted to survey the diversity of biosynthetic pathways in these organisms to investigate their true potential as secondary metabolite producers. Manual search strategies based on the accumulated knowledge on biosynthesis in fungi enabled us to identify 783 biosynthetic pathways across 14 studied species, the majority of which were arranged in biosynthetic gene clusters (BGC). The similarity of BGCs was analysed with the BiG-SCAPE engine which organised the BGCs into 375 gene cluster families (GCF). Only ten GCFs were conserved across all of these fungi indicating that speciation is accompanied by changes in secondary metabolism. From the known compounds produced by the family members some can be directly correlated with identified BGCs which is highlighted herein by the azaphilone, dihydroxynaphthalene, tropolone, cytochalasan, terrequinone, terphenyl and brasilane pathways giving insights into the evolution and diversification of those compound classes. Vice versa, products of various BGCs can be predicted through homology analysis with known pathways from other fungi as shown for the identified ergot alkaloid, trigazaphilone, curvupallide, viridicatumtoxin and swainsonine BGCs. However, the majority of BGCs had no obvious links to known products from the Hypoxylaceae or other well-studied biosynthetic pathways from fungi. These findings highlight that the number of known compounds strongly underrepresents the biosynthetic potential in these fungi and that a tremendous number of unidentified secondary metabolites is still hidden. Moreover, with increasing numbers of genomes for further Hypoxylaceae species becoming available, the likelihood of revealing new biosynthetic pathways that encode new, potentially useful compounds will significantly improve. Reaching a better understanding of the biology of these producers, and further development of genetic methods for their manipulation, will be crucial to access their treasures.
RESUMO
Dimeric polyketides are widespread fungal secondary metabolites. They occur in both ascomycetes and basidiomycetes and, therefore, across fungal phyla. Here we report the isolation of a new binaphthalene, named rufoschweinitzin, from the basidiomycete Cortinarius rufoolivaceus. Rufoschweinitzin consists of two symmetrically 4,4'-coupled torachrysone-8-O-methyl ether moieties. Furthermore, we have identified a binaphthalene biosynthetic gene cluster in an unrelated fungus, the ascomycete Xylaria schweinitzii. Heterologous expression of the encoded cytochrome P450 enzyme verified its coupling activity: dimerization of torachrysone-8-O-methyl ether led to the formation of rufoschweinitzin alongside a hitherto unknown regioisomer, now named alloschweinitzin. We have thus demonstrated enzymatic formation of the basidiomycete's metabolite rufoschweinitzin and made the regiochemistry of alloschweinitzin accessible with an ascomycete-derived enzyme.
Assuntos
Ascomicetos/metabolismo , Cortinarius/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Fúngicas/metabolismo , Naftalenos/metabolismo , Naftóis/metabolismo , Policetídeos/metabolismo , Ascomicetos/crescimento & desenvolvimento , Cortinarius/crescimento & desenvolvimento , EstereoisomerismoRESUMO
A new (S)-binaphthalene-based polymer (P-1) was synthesized by the polymerization of 5,5'-((2,5-dibutoxy-1,4-phenylene)bis(ethyne-2,1-diyl))bis(2-hydroxy-3-(piperidin-1-ylmethyl) benzaldehyde (M-1) with (S)-2,2'-dimethoxy-(1,1'-binaphthalene)-3,3'-diamine (M-2) through the formation of a Schiff base; the corresponding chiral polymer (P-2) could be obtained by the reduction of polymer P-1 with NaBH4 . Chiral polymer P-1 exhibited a remarkable "turn-on" fluorescence-enhancement response towards (D)-phenylalaninol and excellent enantioselective recognition behavior with enantiomeric fluorescence difference ratios (ef) as high as 8.99. More importantly, chiral polymer P-1 displays a bright blue fluorescence color change upon the addition of (D)-phenylalaninol under a commercially available UV lamp, which can be clearly observed by the naked eye. On the contrary, chiral polymer P-2 showed weaker enantioselective fluorescence ability towards the enantiomers of phenylalaninol.