Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.451
Filtrar
1.
ChemSusChem ; : e202400779, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958605

RESUMO

Biogas offers significant benefits as a renewable energy source, contributing to decarbonization, waste management, and economic development. This comprehensive review examines the historical, technological, economic, and global aspects of biomethane production, focusing on the key players such as China, the European Union, and North America, and associated opportunities and challenges as well as future prospects from an Australia perspective. The review begins with an introduction to biogas, detailing its composition, feedstock sources, historical development, and anaerobic digestion (AD) process. Subsequently, it delves into major biomethane production technologies, including physicochemical absorption, high-pressure water scrubbing (HPWS), amine scrubbing (AS), pressure swing adsorption (PSA), membrane permeation/separation (MP), and other technologies including organic solvent scrubbing and cryogenic separation. The study also discusses general guidelines of techno-economic assessments (TEAs) regarding biomethane production, outlining the methodologies, inventory analysis, environmental life cycle assessment (LCA), and estimated production costs. Challenges and opportunities of biogas utilization in Australia are explored, highlighting and referencing global projections, polarization in production approaches, circularity in waste management, and specific considerations for Australia. The review concludes discussing future perspectives for biomethane, emphasizing the importance of technological advancements, policy support, and investment in realizing its full potential for sustainable energy and waste management solutions.

2.
Sci Rep ; 14(1): 16282, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009758

RESUMO

Direct conversion of biogas via the integrative process of dry reforming of methane (DRM) and catalytic methane decomposition (CDM) has received a great attention as a promising green catalytic process for simultaneous production of syngas and carbon nanotubes (CNTs). In this work, the effects of reaction temperature of 700-1100 °C and CH4/CO2 ratio of biogas were investigated over NiMo/MgO catalyst in a fixed bed reactor under industrial feed condition of pure biogas. The reaction at 700 °C showed a rapid catalyst deactivation within 3 h due to the formation of amorphous carbon on catalyst surface. At higher temperature of 800-900 °C, the catalyst can perform the excellent performance for producing syngas and carbon nanotubes. Interestingly, the smallest diameter and the highest graphitization of CNTs was obtained at high temperature of 1000 °C, while elevating temperature to 1100 °C leads to agglomeration of Ni particles, resulting in a larger size of CNTs. The reaction temperature exhibits optimum at 800 °C, providing the highest CNTs yield with high graphitization, high syngas purity up to 90.04% with H2/CO ratio of 1.1, and high biogas conversion (XCH4 = 86.44%, XCO2 = 95.62%) with stable performance over 3 h. The typical composition biogas (CH4/CO2 = 1.5) is favorable for the integration process, while the CO2 rich biogas caused a larger grain size of catalyst and a formation of molybdenum oxide nanorods (MoO3). The long-term stability of NiMo/MgO catalyst at 800 °C showed a stable trend (> 20 h). The experimental findings confirm that NiMo/MgO can perform the excellent activity and high stability at the optimum condition, allowing the process to be more promising for practical applications.

3.
Environ Sci Technol ; 58(28): 12509-12519, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38963393

RESUMO

Biogas produced from anaerobic digestion usually contains impurities, particularly with a high content of CO2 (15-60%), thus decreasing its caloric value and limiting its application as an energy source. H2-driven biogas upgrading using homoacetogens is a promising approach for upgrading biogas to biomethane and converting CO2 to acetate simultaneously. Herein, we developed a novel membrane biofilm reactor (MBfR) with H2 and biogas separately supplied via bubbleless hollow fiber membranes. The gas-permeable hollow fibers of the MBfR enabled high H2 and CO2 utilization efficiencies (∼98% and ∼97%, respectively) and achieved concurrent biomethane (∼94%) and acetate (∼450 mg/L/d) production. High-throughput 16S rRNA gene amplicon sequencing suggested that enriched microbial communities were dominated by Acetobacterium (38-48% relative abundance). In addition, reverse transcription quantitative PCR of the functional marker gene formyltetrahydrofolate synthetase showed that its expression level increased with increasing H2 and CO2 utilization efficiencies. These results indicate that Acetobacterium plays a key role in CO2 to acetate conversion. These findings are expected to facilitate energy-positive wastewater treatment and contribute to the development of a new solution to biogas upgrading.


Assuntos
Biofilmes , Biocombustíveis , Reatores Biológicos , RNA Ribossômico 16S , Dióxido de Carbono/metabolismo , Acetatos/metabolismo
4.
J Environ Manage ; 365: 121715, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968898

RESUMO

Treating hazardous landfill leachate poses significant environmental challenges due to its complex nature. In this study, we propose a novel approach for enhancing the anaerobic digestion of landfill leachate using silver nanoparticles (Ag NPs) conjugated with eco-friendly green silica nanoparticles (Si NPs). The synthesized Si NPs and Ag@Si NPs were characterized using various analytical techniques, including transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The anaerobic digestion performance of Si NPs and Ag@Si NPs was tested by treating landfill leachate samples with 50 mg/L of each NP. The results demonstrated an enhancement in the biogas production rate compared to the control phase without the nanocomposite, as the biogas production increased by 14% and 37% using Si NPs and Ag@Si NPs. Ag@Si NPs effectively promoted the degradation of organic pollutants in the leachate, regarding chemical oxygen demand (COD) and volatile solids (VS) by 58% and 65%. Furthermore, microbial analysis revealed that Ag@Si NPs enhanced the activity of microbial species responsible for the methanogenic process. Overall, incorporating AgNPs conjugated with eco-friendly green Si NPs represents a sustainable and efficient approach for enhancing the anaerobic digestion of landfill leachate.


Assuntos
Biocombustíveis , Nanopartículas Metálicas , Oryza , Dióxido de Silício , Prata , Poluentes Químicos da Água , Prata/química , Dióxido de Silício/química , Nanopartículas Metálicas/química , Anaerobiose , Poluentes Químicos da Água/química , Nanopartículas/química
5.
Sci Total Environ ; 947: 174665, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992388

RESUMO

Addressing the global challenge of energy sustainability and global directives on farming emissions, the United Nations, the European Union, and China have led with strict targets for clean energy, renewable share growth, and carbon neutrality, highlighting a commitment to collective sustainability. This work is situated within the ambit of the Sustainable Development Goals (SDGs), advocating for a transition towards renewable energy sources. With substantial and accessible bioenergy resources, notably in Hubei Province, China, biogas technology has emerged as an emission-cutting solution. This research, focused on the Jianghan Plain, employs an integrated approach combining spatial analyses with machine learning tools to evaluate crop yield stability over two decades, with the aim of maximising the biogas yield from agricultural byproducts, i.e., crop straw and livestock manure. Using Multi-Criteria Decision Analysis (MCDA), which is informed by grey-based DEMATEL, 9 constraints and 13 environmental, social, and economic criteria were assessed to identify optimal sites for biogas facilities. The findings underscore the significant bioenergy potential of agricultural byproducts from the plain of 6.3 × 1012 kJ/year at an 11.4 kJ/m2 density. Stability analyses revealed consistent biomass availability, with rice in Gongan and Shayang and wheat in Jiangling being the primary contributors. Through the MCDA, 45-66 optimal biogas plants were identified across 4 critical counties (Zhongxiang, Shangyang, Jingshan, and Yichen), balancing the energy supply and demand under various stable scenarios. Furthermore, this study demonstrated the criticality of moderate biomass stability for stakeholder consensus and identified areas of high stability essential for energy demand fulfilment. Theoretically, this study offers a practical model for bioenergy resource exploitation that aligns with global sustainability and carbon neutrality goals to address the urgent need for renewable energy solutions amidst the global energy crisis. Practically, this study sets a precedent for policy and planning in environmental, agricultural, and renewable sectors, signifying a step forwards in achieving environmental sustainability and an energy-efficient future.

6.
Bioresour Technol ; 407: 131101, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996849

RESUMO

During in situ biomethanation, microbial communities can convert complex Organic Matter (OM) and H2 into CH4. OM biodegradation was compared between Anaerobic Digestion (AD) and in situ biomethanation, in semi-continuous processes, using two inocula from the digester (D) and the post-digester (PoD) of an AD plant. The impact of H2 on OM degradation was assessed using a fractionation method. Operational parameters included 20 days of hydraulic retention time and 1.5 gVS.L-1.d-1 of organic loading rate. During in situ biomethanation, 485 NmL of H2 were injected for each feeding (3 times a week). Maximum organic COD removal was 0.6 gCOD in AD control and at least 1.6 gCOD for in situ biomethanation. Therefore, COD removal was 2.5 times higher with H2 injections. These results bring out the potential of H2 injections during AD, not only for CO2 consumption but also for better OM degradation.

7.
Water Environ Res ; 96(7): e11082, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39039961

RESUMO

Anaerobic co-digestion using an anaerobic dynamic membrane bioreactor (AnDMBR) can separate the sludge retention time and hydraulic retention time, retaining the biomass for efficient degradation and the use of less expensive large pore-size membrane materials and more sustainable dynamic membranes (DMs). Therefore, anaerobic co-digestion of toilet blackwater (BW) and kitchen waste (KW) using an AnDMBR was hypothesized to increase the potential for co-digestion. Here, the efficiency and stability of AnDMBR in anaerobic co-digestion of toilet BW and KW were investigated. DM morphology and structural characteristics, filtration properties, and composition, as well as membrane contamination and membrane regeneration mechanisms, were investigated. Average daily biogas yields of the reactor in two membrane cycles before and after cleaning were 788.67 and 746.09 ml/g volatile solids, with average methane content of 66.64% and 67.27% and average COD removal efficiencies of 82.03% and 80.96%, respectively. The results showed that the bioreactor obtained good performance and stability. During the stabilization phase of the DM operation, the flux was maintained between 43.65 and 65.15 L/m2/h. DM was mainly composed of organic and inorganic elements. Off-line cleaning facilitated DM regulation and regeneration, restoring new Anaerobic morphology and structure. PRACTITIONER POINTS: High efficiency co-digestion of BW and KW was realized in the DMBR system. Average daily biogas yields before and after membrane cleaning were 788.67 and 746.09 ml/g volatile solids. Off-line cleaning facilitated DM regulation and regeneration as well as system stability. The flux was maintained between 43.65 and 65.15 L/m2/h during operation.


Assuntos
Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
8.
Biotechnol Bioeng ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39036861

RESUMO

A high rate upflow anaerobic polyfoam-based bioreactor (UAPB) was developed for lab-scale in-situ biogas upgrading by H2 injection. The reactor, with a volume of 440 mL, was fed with synthetic wastewater at an organic loading rate (OLR) of 3.5 g COD/L·day and a hydraulic retention time (HRT) of 7.33 h. The use of a porous diffuser, alongside high gas recirculation, led to a higher H2 liquid mass transfer, and subsequently to a better uptake for high CH4 content of 56% (starting from 26%). Our attempts to optimize both operational parameters (H2 flow rate and gas recirculation ratio, which is the total flow rate of recirculated gas over the total outlet of gas flow rate) were not initially successful, however, at a very high recirculation ratio (32) and flow rate (54 mL/h), a significant improvement of the hydrogen consumption was achieved. These operational conditions have in turn driven the methanogenic community toward the dominance of Methanosaetaceae, which out-competed Methanosarcinaceae. Nevertheless, highly stable methane production rates of 1.4-1.9 L CH4/Lreactor.day were observed despite the methanogenic turnover. During the different applied operational conditions, the bacterial community was especially impacted, resulting in substantial shifts of taxonomic groups. Notably, Aeromonadaceae was the only bacterial group positively correlated with increasing hydrogen consumption rates. The capacity of Aeromonadaceae to extracellularly donate electrons suggests that direct interspecies electron transfer (DIET) enhanced biogas upgrading. Overall, the proposed innovative biological in-situ biogas upgrading technology using the UAPB configuration shows promising results for stable, simple, and effective biological biogas upgrading.

9.
Chempluschem ; : e202400016, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39036885

RESUMO

Sludge disintegration is an environmental and industrial challenge that requires intensive research and technological development. Sludge contains a complex structure with a high yield of various chemical and biological compounds. Anaerobic digestion is the most used process for sludge disintegration to produce biogas, detoxify the sludge, and generate biosolids that can be used in agricultural. Biological cell lysis is the rate-limiting cell lysis. This review discusses the application of sonolysis as a sludge pretreatment for enhanced anaerobic digestion via three combined processes: thermal destruction, hydrochemical shear forces, and radical oxidation. The mechanistic pathways of sono-pretreatment to enhance biogas, sludge-enhanced dewatering, activation of filamentous bacteria, oxidation of organic pollutants, release of heavy metals, reduction of bulking and foaming sludge, and boosting ammonia-oxidizing bacteria activity are discussed in this report. The combination of ultrasound with other chemical processes, such as Fenton and cation binding agents for enhanced sludge disintegration, is discussed. Finally, we reviewed the most common large-scale sono-reactors available on the market for sludge disintegration.

10.
J Environ Manage ; 366: 121811, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002456

RESUMO

Nowadays, the utilization of biogas for energy generation is hindered by the declining production costs of solar and wind power. A shift towards the valorization of biogas into ectoine, a highly valuable bioproduct priced at 1000 €â¸±kg-1, offers a novel approach to fostering a more competitive biogas market while contributing to carbon neutrality. This study evaluated the optimization of CH4 gas-liquid mass transfer in 10 L bubble column bioreactors for CH4 conversion into ectoine and hydroxyectoine using a mixed methanotrophic culture. The influence of the empty bed residence time (EBRTs of 27, 54, and 104 min) at different membrane diffuser pore sizes (0.3 and 0.6 mm) was investigated. Despite achieving CH4 elimination capacities (CH4-ECs) of 10-12 g⸱m-3⸱h-1, an EBRT of 104 min mediated CH4 limitation within the cultivation broth, resulting in a negligible biomass growth. Reducing the EBRT to 54 min entailed CH4-ECs of 21-24 g⸱m-3⸱h-1, concomitant to a significant increase in biomass growth (up to 0.17 g⸱L⸱d-1) and reaching maximum ectoine and hydroxyectoine accumulation of 79 and 13 mg⸱gVSS-1, respectively. Conversely, process operation at an EBRT of 27 min lead to microbial inhibition, resulting in a reduced biomass growth of 0.09 g⸱L⸱d-1 and an ectoine content of 47 mg⸱gVSS-1. While the influence of diffuser pore size was less pronounced compared to EBRT, the optimal process performance was observed with a diffuser pore size of 0.6 mm.

11.
J Environ Manage ; 366: 121874, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39025014

RESUMO

Anaerobic digestion for flexible biogas production can lead to digestion inhibition under high shock loads. While steel slag addition has shown promise in enhancing system buffering, its limitations necessitate innovation. This study synthesized the nitrogen-doped activated carbon composite from steel slag to mitigate intermediate product accumulation during flexible biogas production. Material characterization preceded experiments introducing the composite into anaerobic digestion systems, evaluating its impact on methane production efficiency under hydraulic and concentration sudden shocks. Mechanistic insights were derived from microbial community and metagenomic analyses, facilitating the construction of the modified Anaerobic Digestion Model No. 1 (ADM1) to quantitatively assess the material's effects. Results indicate superior resistance to concentration shocks with substantial increment of methane production rate up to 33.45% compared with control group, which is mediated by direct interspecies electron transfer, though diminishing with increasing shock intensity. This study contributes theoretical foundations for stable flexible biogas production and offers an effective predictive tool for conductor material reinforcement processes.

12.
J Environ Manage ; 366: 121920, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029174

RESUMO

Slaughterhouse waste (SHW) poses significant environmental challenges due to its complex composition. In response, a novel review exploration of anaerobic digestion (AD) as a means of valorising SHW within the context of the circular economy (CE) is presented. The physicochemical properties of individual SHW, representing key parameters for the correct management of the AD process, are scrutinized. These parameters are further connected with identifying suitable pretreatment methods to enhance biogas production. Subsequently, the review examines the diverse technologies employed in the AD of SHW, considering the complexities of mono- or co-digestion. Various AD systems are evaluated for their effectiveness in harnessing the substantial biogas production potential from SHW, encompassing key parameters, reactor configurations, and operational conditions that influence the AD process. Moreover, the review interestingly extends its scope to the recovery and management of digestate, the by-product of AD. Along with the digestate composition, strategies for various utilization of this by-product are discussed. This investigation thus underscores, within the principles of the CE, the dual sustainable benefits of SHW processing via AD in biogas production and utilization of the resultant nutrient-rich digestate in various sectors.

13.
Sci Total Environ ; 946: 174458, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38964404

RESUMO

Biogas residues (i.e., digestate) are rich in NH4+ that has great agricultural value but environmental risk if not recycled. Biochar can be an effective adsorbent retaining NH4+ from digestate. However, it remains unclear how the unique composition of digestate affects the capacity and mechanisms of NH4+ adsorption on biochar. This study examined the mechanisms and driving factors of NH4+ recovery from digestate containing different molecular-weight organic particles by using wood-derived biochar with or without H2O2 modification. Four solutions were prepared, including pure NH4+, synthetic NH4+ with multiple cations mimicking digestate solution, supernatant of digestate with small organic particles and dissolved organic matter, and digestate mixture containing supernatant and large organic particles. The results showed that compared with pure NH4+ solution, the adsorbed NH4+ was 42% lower in the synthetic NH4+ solution with multiple cations but was 2.2 time higher in the supernatant of digestate on two biochars following 48-h adsorption. Modified biochar did not change NH4+ adsorption in pure NH4+ solution despite higher specific surface area than raw biochar, but it increased the adsorption of NH4+ in digestate solutions with high pH (e.g., 4.03 vs. 3.37 mg N g-1 for modified and raw biochar, respectively, in the supernatant of digestate). Compared with the supernatant, the large organic particles in digestate mixture significantly but slightly decreased NH4+ adsorption on modified but not raw biochar. The desorption rate of NH4+ on the biochar was up to 74%-100%, and it was not supressed by the adsorption of organic particles in digestate. The findings here demonstrate the dominant role of electrostatic attraction in NH4+ adsorption, the important role of high pH and organic particles in digestate in facilitating NH4+ adsorption on biochar, and the suitability of the wood-derived biochar in recovering NH4+ from digestate and releasing N for agricultural application.


Assuntos
Compostos de Amônio , Carvão Vegetal , Madeira , Carvão Vegetal/química , Madeira/química , Adsorção , Concentração de Íons de Hidrogênio , Anaerobiose , Perda e Desperdício de Alimentos
14.
Bioresour Technol ; 407: 131112, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009050

RESUMO

Because of the naturally limited anaerobic degradability and limited biogas yield of raw sludge (RS), this study aims to increase the biogas production of primary sludge (PS) and waste activated sludge (WAS) by the integration of thermal alkaline process (TAP). PH 11 is confirmed to be the most suitable pH value for the TAP of both sludges. Moreover, with the pretreatment at pH 11 and 160 °C (6 bar) for 30 min, the investigated PSs and WASs achieved an increased biogas production of up to 81 % and 72 %, respectively. The improved net electricity production of WASs after TAP varied between 15-43 % compared to conventional WAS digestion. However, the TAP of PS at pH 11 enhanced the biogas production by 1-81 %, which did not constantly contribute to an improved net electricity production.

15.
J Environ Manage ; 366: 121884, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032250

RESUMO

Biogas production is seen as one of the key measures in circular economy providing several benefits for the environment. In practice, however, these benefits may not be achieved if the production is not implemented and managed in ways that reduce gaseous emissions. Thus, this study aimed at highlighting how different management practices impact the climate during the life cycle of biogas production in comparison to management without biogas production (reference). Advanced, more emission-reducing practices resulted in 97-107% and conventional practices in 57-75% less emissions when biogas was utilized as transport fuel. If biogas was utilized in CHP (combined heat and power production), the emission reductions were 67-74% and 13-30%, respectively. This reflects the fact that inefficient practices can lead to minimal emission reduction without achieving the desired climate benefit in comparison to the reference. On the European level, this may also mean that the emission reduction demands of RED II (Renewable Energy Directive) regulation are not met. Therefore, when supporting biogas production with public funds, assurance of using emission-reducing practices should be made a prerequisite.

16.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1331-1336, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886432

RESUMO

Understanding the effects of food waste biogas residue composting and chemical amendments on soil aggregates composition of different particle sizes, stability, and organic matter distribution in relocation sites could provide primary data for improving soil quality and land utilization of food waste biogas residue composting. We analyzed the characteristics of soil aggregates distribution, stability of aggregates, and organic matter content in different particle sizes under treatments with different application amounts of food waste biogas residue composting, chemical amendments (ß-cyclodextrin, calcium sulfate and ferric oxide were mixed at a mass ratio of 1:1:1), and control (100% soil). The results showed that 20% (soil: biogas residue composting=8:2) and 30% (soil: biogas residue composting =7:3) biogas residue composting significantly decreased the micro-aggregates content with the particle size of <0.106 mm and increased the large aggregates content with the particle size of 0.5-1.0 mm. All treatments significantly increased large aggregates content with the particle size of ≥2.0 mm, soil aggregate structure content, and mean weight diameter, but reduced the percentage of aggregate destruction. Among all the treatments, the effect of mixes application of 20% biogas residue composting and chemical amendments was the best. Biogas residue composting treatments significantly affected the distribution of organic matter in soil aggregates, with the strongest effect under 30% biogas residue composting treatment. Biogas residue composting treatments significantly increased soil organic matter content in all aggregates, with the maximal increase of organic matter content in soil micro-aggregates with the particle size of 0.106-0.25 mm. In conclusion, biogas residue composting could increase organic matter content of soil aggregates in different particle sizes, promote the formation of large soil aggregates, and improve the stability of aggregation. Specifically, the mixed application of biogas residue composting and chemical amendments performed better on soil improvement in relocation site.


Assuntos
Biocombustíveis , Compostagem , Compostos Orgânicos , Eliminação de Resíduos , Solo , Solo/química , Compostagem/métodos , Biocombustíveis/análise , Compostos Orgânicos/análise , Compostos Orgânicos/química , Eliminação de Resíduos/métodos , Tamanho da Partícula , Alimentos , Perda e Desperdício de Alimentos
17.
Front Microbiol ; 15: 1389257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933034

RESUMO

Microbial inhibition by high ammonia concentrations is a recurring problem that significantly restricts methane formation from intermediate acids, i.e., propionate and acetate, during anaerobic digestion of protein-rich waste material. Studying the syntrophic communities that perform acid conversion is challenging, due to their relatively low abundance within the microbial communities typically found in biogas processes and disruption of their cooperative behavior in pure cultures. To overcome these limitations, this study examined growth parameters and microbial community dynamics of highly enriched mesophilic and ammonia-tolerant syntrophic propionate and acetate-oxidizing communities and analyzed their metabolic activity and cooperative behavior using metagenomic and metatranscriptomic approaches. Cultivation in batch set-up demonstrated biphasic utilization of propionate, wherein acetate accumulated and underwent oxidation before complete degradation of propionate. Three key species for syntrophic acid degradation were inferred from genomic sequence information and gene expression: a syntrophic propionate-oxidizing bacterium (SPOB) "Candidatus Syntrophopropionicum ammoniitolerans", a syntrophic acetate-oxidizing bacterium (SAOB) Syntrophaceticus schinkii and a novel hydrogenotrophic methanogen, for which we propose the provisional name "Candidatus Methanoculleus ammoniitolerans". The results revealed consistent transcriptional profiles of the SAOB and the methanogen both during propionate and acetate oxidation, regardless of the presence of an active propionate oxidizer. Gene expression indicated versatile capabilities of the two syntrophic bacteria, utilizing both molecular hydrogen and formate as an outlet for reducing equivalents formed during acid oxidation, while conserving energy through build-up of sodium/proton motive force. The methanogen used hydrogen and formate as electron sources. Furthermore, results of the present study provided a framework for future research into ammonia tolerance, mobility, aggregate formation and interspecies cooperation.

18.
Environ Sci Pollut Res Int ; 31(31): 44005-44022, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38918298

RESUMO

Azotobacter chroococcum and Bacillus subtilis were selected as fermentation strains, and biogas residue after anaerobic digestion of kitchen waste and residual sludge was used as fermentation substrate. A single factor optimization test was used to optimize the solid-state fermentation parameters of biogas residue with the number of viable bacteria and the number of spores as indexes. The results showed that the optimum inoculation conditions involved the following: 55% initial moisture content, 15% initial inoculation amount, 30 ℃, and 1:1 initial inoculation ratio for 13 days. Pot experiment showed that the prepared three kinds of bacterial fertilizers could not only effectively promote the growth of white clover, improve the composition of soil nutrients, but also change the structure of soil bacterial community, which is of great significance to the health of soil ecosystem in white clover.


Assuntos
Biocombustíveis , Fertilizantes , Esgotos , Anaerobiose , Fermentação
19.
Environ Res ; 257: 119314, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824988

RESUMO

This study synthesized novel, green, and easily recoverable surface-modified economical catalysts via hydrothermal treatment (HT) successfully, utilizing biogas residue biochar (BRB), a food waste product from anaerobic fermentation, pyrolyzed at 500 °C for 50 min. Using autoclaves, a total of six solutions were prepared, each having 1 g fine-grinded BRB, surficial modified by adding glycerol (GL) (10 or 20 mL) and SDI water (70 or 60 mL), and heated in an oven at 240 °C, 180 °C, and 120 °C for 24 h. Afterward, the catalysts showed the potential for degradation of widely used emerging pollutants like ciprofloxacin. Taking advantage of catalytic surface modification, the catalytic ozonation degradation was more effective than that of a single ozonation. However, under similar conditions, catalyst amount 0.20 g, ozone dose 15 mg L-1, and ciprofloxacin 80 mg L-1, the performance of the 10 mL GL-180 °C catalyst was excellent. It showed a 92.45%-94.41% optimum removal rate in the 8-10 min interval. After five continuous cycles, the 10 mL GL-180 °C catalyst exhibited excellent stability and reusability. XPS, FT-IR, BET, XRD, and SEM before and after the reaction confirmed the successful synthesis and degradation mechanism. A possible degradation pathway was unrevealed based on a liquid chromatography-mass spectrometer (LC-MS) and scavenger test, proving the significant roles of superoxide radicals (O2•-), hydroxyl radicals (•OH), and singlet oxygen (1O2). Further, Electron paramagnetic resonance (EPR) analysis confirmed the presence of active oxygen species. Subsequently, 10 mL GL-180 °C showed promising degradation for the actual water environment, such as groundwater (73.55%) and river water (64.74%). This work provides a valuable economic strategy to convert biogas residue biochar into a low-cost catalyst for organic pollutant decomposition.


Assuntos
Biocombustíveis , Carvão Vegetal , Ciprofloxacina , Ozônio , Poluentes Químicos da Água , Ozônio/química , Carvão Vegetal/química , Ciprofloxacina/química , Catálise , Poluentes Químicos da Água/química , Biocombustíveis/análise
20.
Sci Total Environ ; 945: 173981, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901587

RESUMO

Solid waste landfills are responsible for much of the anthropogenic methane emitted from the waste sector. The quantification of fugitive CH4 emissions from a landfill is to date characterised by high uncertainty and several methodologies have been devised to estimate emission fluxes. Unmanned Aerial Vehicles (UAVs, also known as drones) are revolutionising the way CH4 emission monitoring is conceived and offer new opportunities for quantifying emission fluxes from a landfill, mainly due to recent advances in sensor miniaturisation that make these instruments lighter and more suitable to be equipped on a drone. The paper analyses publications from the period 2014-2024 that illustrate UAV-based methods that can be used for this purpose, identifying experiences in the field and the current state of research. The review has highlighted a current research status characterised by a strong experimental focus, with few tests carried out in landfills under real emission conditions (33 % of the reviewed papers). Since 2018, there has been a growing interest in open-path sensors, tested in some controlled-release experiments according to different configurations which have given promising results, but experiences are limited and there are no experiments conducted directly in landfills. In general, the UAV-based methods identified by this systematic review are characterised by unclear uncertainties. Drones are a viable alternative to traditional monitoring methods at landfills and allow data to be acquired with a spatial and temporal resolution that can hardly be achieved by other low-cost methods. However, further studies and field trials are needed to better understand methodological aspects: especially the uncertainty of each step in the quantification process need to be properly analysed and quantified more precisely.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA