Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Comput Biol Med ; 182: 109181, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326264

RESUMO

Accurate perception of biological tissues (BT) thickness is essential for preliminary evaluation of medical diagnosis and animal nutrition. However, traditional thickness measuring approaches of BT require complex operation, high-cost, and trigger biological stress response. Herein this study, an novel in vitro BT thickness measuring approach integrated with force test system (FST) and the discrete multiwavelet transform convolutional neural network (DMWA-CNN) prediction model based on deep learning are proposed. Simultaneously, several comprehensive experiments and model comparisons are conducted to demonstrate the superiority of the proposed approach. By establishing a DMWA-CNN demonstrates higher estimation accuracy than other traditional algorithm, achieving 100 % accuracy for artificial BT. Moreover, the experimental results indicate that proposed approach is robust to elastic modulus variation (E), external load variation (F), and small thickness differences (Ts). In addition, four kinds of the pork' thickness are experimentally measured, and the accuracy value is not less than 98.2 %. The thickness of BT determined using the FST and DMWA-CNN algorithm demonstrate potential application in the biomechanical parameter prediction.

2.
J Biophotonics ; 17(9): e202400224, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39049557

RESUMO

The welding effect of the laser on skin tissue is reduced by thermal damage to skin tissue, and greater thermal damage to skin tissue caused by the laser is prevented by predicting thermal damage. In this paper, a finite element model is established for the temperature field of skin tissue scanned by a femtosecond laser to obtain the influence of laser process parameters and scanning path on the thermal damage parameters of skin tissue and the thermal damage area, and verified experimentally. The results show that the established finite element model is accurate and can accurately reflect the temperature distribution during the process of femtosecond laser welding of porcine skin tissues; used to predict the thermal damage parameters of the skin tissues and the thermal damage area; and provide guidance for the study of the femtosecond laser welding of the skin tissues process to obtain the optimal process parameters.


Assuntos
Análise de Elementos Finitos , Lasers , Pele , Animais , Suínos , Pele/lesões , Fatores de Tempo , Temperatura , Temperatura Alta
3.
Acta Biomater ; 184: 226-238, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945188

RESUMO

This paper presents an inverse finite element (FE) approach aimed at estimating multi-layered human penile tissues. The inverse FE approach integrates experimental force-displacement and boundary deformation data of penile tissues with a developed FE model and uses new experimental data on human penile tissue. The experimental study encompasses whole organ plate-compression tests and individual layer tensile and compression tests, providing comprehensive insights into the tissue's mechanical behaviour. The biomechanical characterisation of penile tissue is of crucial significance for understanding its mechanical behaviour under various physiological and pathological conditions. The FE model is constructed using the realistic geometry of the penile segment and appropriate constitutive models for each tissue layer to leverage the accuracy and consistency of the model. Through systematic variation of tissue parameters in the inverse FE algorithm, simulations achieve the best match with both force-displacement and deformed boundary results obtained from the whole organ plate-compression tests. Test results from individual tissue layers are also utilised to assess the estimated parameters. The proposed inverse FE approach allows for the estimation of penile tissue parameters with high precision and reliability, shedding light on the mechanical properties of this complex biological organ. This work has applications not only in urology but also for researchers in various disciplines of biomechanics. As a result, our study contributes to advancing the understanding of human penile tissue mechanics whilst the methodology could also be applied to a range of other soft biological tissues. STATEMENT OF SIGNIFICANCE: This research uses a multi-target inverse finite element (FE) approach for estimating the material parameters of human penile tissues. By integrating experimental data and a realistic FE model, this study achieves high-precision constitutive model parameter estimation, offering key insights into penile tissue mechanics under various loading conditions. The significance of this work lies in the use of this inverse FE approach for fresh-frozen human penile tissues, to identify the mechanical properties and constitutive models for both segregated tunica albuginea and corpus cavernosum as well as intact penile tissue segments. The study's scientific impact lies in its advancement of the understanding of human urological tissue mechanics, impacting researchers and clinicians alike.


Assuntos
Análise de Elementos Finitos , Pênis , Humanos , Masculino , Pênis/fisiologia , Modelos Biológicos , Estresse Mecânico , Fenômenos Biomecânicos , Força Compressiva , Resistência à Tração
4.
Micromachines (Basel) ; 15(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38793137

RESUMO

Speckle patterns are a generic feature in coherent imaging techniques like optical coherence tomography (OCT). Although speckles are granular like noise texture, which degrades the image, they carry information that can be benefited by processing and thereby furnishing crucial information of sample structures, which can serve to provide significant important structural details of samples in in vivo longitudinal pre-clinical monitoring and assessments. Since the motions of tissue molecules are indicated through speckle patterns, speckle variance OCT (SV-OCT) can be well-utilized for quantitative assessments of speckle variance (SV) in biological tissues. SV-OCT has been acknowledged as a promising method for mapping microvasculature in transverse-directional blood vessels with high resolution in micrometers in both the transverse and depth directions. The fundamental scope of this article reviews the state-of-the-art and clinical benefits of SV-OCT to assess biological tissues for pre-clinical applications. In particular, focus on precise quantifications of in vivo vascular response, therapy assessments, and real-time temporal vascular effects of SV-OCT are primarily emphasized. Finally, SV-OCT-incorporating pre-clinical techniques with high potential are presented for future biomedical applications.

5.
Bioengineering (Basel) ; 11(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38790336

RESUMO

A recent author's fractal fluid-dynamic dispersion theory in porous media has focused on the derivation of the associated nonergodic (or effective) macrodispersion coefficients by a 3-D stochastic Lagrangian approach. As shown by the present study, the Fickian (i.e., the asymptotic constant) component of a properly normalized version of these coefficients exhibits a clearly detectable minimum in correspondence with the same fractal dimension (d ≅ 1.7) that seems to characterize the diffusion-limited aggregation state of cells in advanced stages of cancerous lesion progression. That circumstance suggests that such a critical fractal dimension, which is also reminiscent of the colloidal state of solutions (and may therefore identify the microscale architecture of both living and non-living two-phase systems in state transition conditions) may actually represent a sort of universal nature imprint. Additionally, it suggests that the closed-form analytical solution that was provided for the effective macrodispersion coefficients in fractal porous media may be a reliable candidate as a physically-based descriptor of blood perfusion dynamics in healthy as well as cancerous tissues. In order to evaluate the biological meaningfulness of this specific fluid-dynamic parameter, a preliminary validation is performed by comparison with the results of imaging-based clinical surveys. Moreover, a multifractal extension of the theory is proposed and discussed in view of a perspective interpretative diagnostic utilization.

6.
J Biomed Opt ; 29(Suppl 2): S22703, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584965

RESUMO

Significance: Raman spectroscopy has been used as a powerful tool for chemical analysis, enabling the noninvasive acquisition of molecular fingerprints from various samples. Raman spectroscopy has proven to be valuable in numerous fields, including pharmaceutical, materials science, and biomedicine. Active research and development efforts are currently underway to bring this analytical instrument into the field, enabling in situ Raman measurements for a wider range of applications. Dispersive Raman spectroscopy using a fixed, narrowband source is a common method for acquiring Raman spectra. However, dispersive Raman spectroscopy requires a bulky spectrometer, which limits its field applicability. Therefore, there has been a tremendous need to develop a portable and sensitive Raman system. Aim: We developed a compact swept-source Raman (SS-Raman) spectroscopy system and proposed a signal processing method to mitigate hardware limitations. We demonstrated the capabilities of the SS-Raman spectroscopy by acquiring Raman spectra from both chemical and biological samples. These spectra were then compared with Raman spectra obtained using a conventional dispersive Raman spectroscopy system. Approach: The SS-Raman spectroscopy system used a wavelength-swept source laser (822 to 842 nm), a bandpass filter with a bandwidth of 1.5 nm, and a low-noise silicon photoreceiver. Raman spectra were acquired from various chemical samples, including phenylalanine, hydroxyapatite, glucose, and acetaminophen. A comparative analysis with the conventional dispersive Raman spectroscopy was conducted by calculating the correlation coefficients between the spectra from the SS-Raman spectroscopy and those from the conventional system. Furthermore, Raman mapping was obtained from cross-sections of swine tissue, demonstrating the applicability of the SS-Raman spectroscopy in biological samples. Results: We developed a compact SS-Raman system and validated its performance by acquiring Raman spectra from both chemical and biological materials. Our straightforward signal processing method enhanced the quality of the Raman spectra without incurring high costs. Raman spectra in the range of 900 to 1200 cm-1 were observed for phenylalanine, hydroxyapatite, glucose, and acetaminophen. The results were validated with correlation coefficients of 0.88, 0.84, 0.87, and 0.73, respectively, compared with those obtained from dispersive Raman spectroscopy. Furthermore, we performed scans across the cross-section of swine tissue to generate a biological tissue mapping plot, providing information about the composition of swine tissue. Conclusions: We demonstrate the capabilities of the proposed compact SS-Raman spectroscopy system by obtaining Raman spectra of chemical and biological materials, utilizing straightforward signal processing. We anticipate that the SS-Raman spectroscopy will be utilized in various fields, including biomedical and chemical applications.


Assuntos
Acetaminofen , Análise Espectral Raman , Suínos , Animais , Análise Espectral Raman/métodos , Glucose , Fenilalanina , Hidroxiapatitas
7.
J Biomed Opt ; 29(5): 052920, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38495527

RESUMO

Significance: The interference-holographic method of phase scanning of fields of scattered laser radiation is proposed. The effectiveness of this method for the selection of variously dispersed components is demonstrated. This method made it possible to obtain polarization maps of biological tissues at a high level of depolarized background. The scale-selective analysis of such maps was used to determine necrotic changes in the optically anisotropic architectonics of biological tissues. Objective: Development and experimental approbation of layered phase polarimetry of repeatedly scattered fields in diffuse layers of biological tissues. Application of scale-selective processing of the found coordinate distributions of polarization states in various phase sections of object fields. Determination of criteria (markers) for histological differential diagnosis of the causes of necrotic changes in optical anisotropy of biological tissues. Approach: We used a synthesis of three instrumental and analytical methods. Polarization-interference registration of laser radiation scattered by a sample of biological tissue. Digital holographic reconstruction and layered phase scanning of distributions of complex amplitudes of the object field. Analytical determination of polarization maps of various phase cross-sections of repeatedly scattered radiation. Application of wavelet analysis of the distributions of polarization states in the phase plane of a single scattered component of an object field. Determination of criteria (markers) for differential diagnosis of necrotic changes in biological tissues with different morphological structure. Two cases are considered. The first case is the myocardium of those who died as a result of coronary heart disease and acute coronary insufficiency. The second case is lung tissue samples of deceased with bronchial asthma and fibrosis. Results: A method of polarization-interference mapping of diffuse object fields of biological tissues has been developed and experimentally implemented. With the help of digital holographic reconstruction of the distributions of complex amplitudes, polarization maps in various phase sections of a diffuse object field are found. The wavelet analysis of azimuth and ellipticity distributions of polarization in the phase plane of a single scattered component of laser radiation is used. Scenarios for changing the amplitude of the wavelet coefficients for different scales of the scanning salt-like MHAT function are determined. Statistical moments of the first to fourth orders are determined for the distributions of the amplitudes of the wavelet coefficients of the azimuth maps and the ellipticity of polarization. As a result, diagnostic markers of necrotic changes in the myocardium and lung tissue were determined. The statistical criteria found are the basis for determining the accuracy of their differential diagnosis of various necrotic states of biological tissues. Conclusions: Necrotic changes caused by "coronary artery disease-acute coronary insufficiency" and "asthma-pulmonary fibrosis" were demonstrated by the method of wavelet differentiation with polarization interference with excellent accuracy.


Assuntos
Holografia , Lasers , Análise Espectral , Técnicas Histológicas , Miocárdio
8.
J Mech Behav Biomed Mater ; 154: 106523, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554581

RESUMO

A theoretical framework, united by a "system effect" is formulated to model the cutting/haptic force evolution at the cutting edge of a surgical cutting instrument during its penetration into soft biological tissue in minimally invasive surgery. Other cutting process responses, including tissue fracture force, friction force, and damping, are predicted by the model as well. The model is based on a velocity-controlled formulation of the corresponding equations of motion, derived for a surgical cutting instrument and tissue based on Kirchhoff's fundamental energy conservation law. It provides nearly zero residues (absolute errors) in the equations of motion balances. In addition, concurrent closing relationships for the fracture force, friction coefficient, friction force, process damping, strain rate function (a constitutive tissue model), and their implementation within the proposed theoretical framework are established. The advantage of the method is its ability to make precise real-time predictions of the aperiodic fluctuating evolutions of the cutting forces and the other process responses. It allows for the robust modeling of the interactions between a medical instrument and a nonlinear viscoelastic tissue under any physically feasible working conditions. The cutting process model was partially qualitatively verified through numerical simulations and by comparing the computed cutting forces with experimentally measured values during robotic uniaxial biopsy needle constant velocity insertion into artificial gel tissue, obtained from previous experimental research. The comparison has shown a qualitatively similar adequate trend in the evolution of the experimentally measured and numerically predicted cutting forces during insertion of the needle.


Assuntos
Fenômenos Mecânicos , Agulhas , Biópsia por Agulha , Movimento (Física) , Procedimentos Cirúrgicos Minimamente Invasivos
9.
J Imaging ; 10(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38249007

RESUMO

Human body tissue disease diagnosis will become more accurate if transmittance images, such as X-ray images, are separated according to each constituent tissue. This research proposes a new image decomposition technique based on the matrix inverse method for biological tissue images. The fundamental idea of this research is based on the fact that when k different monochromatic lights penetrate a biological tissue, they will experience different attenuation coefficients. Furthermore, the same happens when monochromatic light penetrates k different biological tissues, as they will also experience different attenuation coefficients. The various attenuation coefficients are arranged into a unique k×k-dimensional square matrix. k-many images taken by k-many different monochromatic lights are then merged into an image vector entity; further, a matrix inverse operation is performed on the merged image, producing N-many tissue thickness images of the constituent tissues. This research demonstrates that the proposed method effectively decomposes images of biological objects into separate images, each showing the thickness distributions of different constituent tissues. In the future, this proposed new technique is expected to contribute to supporting medical imaging analysis.

10.
Int J Comput Assist Radiol Surg ; 19(3): 571-579, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37855940

RESUMO

PURPOSE: Preemptively estimating tissue damage is crucial for a safe surgical procedure. We previously investigated the possibility of estimating the fracture energies of biological tissues based on their elasticities. However, the reason behind the presence of these correlations is poorly understood. In this study, we investigate the effect of a tissue's histology on the correlation between the fracture energy and elasticity. We hypothesize that two tissues with similar fibrous structure will show a similar correlation between the fracture energy and elasticity. METHODS: Porcine duodenum were used for this study. Two tensile tests were performed for each porcine duodenum specimen to determine its elasticity and tearing energy. The correlation between fracture energy and elasticity was then investigated using the results from the mechanical tests. Furthermore, duodenum specimens were fixed in 10% formalin while under tension. Microscopic images were then taken to visualize the fibrous structure within the duodenum tissues under tension. RESULTS: The results from the tensile test showed that the fracture energy had an isotropic positive and linear correlation with the elasticity to the negative 0.5th power (R2 = 0.89), which was also previously reported in small intestinal (jejunum) specimens. Furthermore, the tearing patterns of the duodenum were identical to the ones reported in the jejunum. Hematoxylin and eosin staining on tissues fixed under tension showed that the endomysium fibers are involved in providing resistance toward traction. CONCLUSION: Through mechanical tests, we showed that porcine duodenum tissues also have a correlation between its fracture energy and elasticity. We also discussed that the histological structure of a tissue is an important factor that dictates how the tearing energy of a tissue will correlate to the elasticity. We understood that since the tearing mechanism between the duodenum and jejunum was similar, the correlations between their fracture energies and elasticities were also similar.


Assuntos
Fraturas Ósseas , Animais , Suínos , Fenômenos Biomecânicos , Elasticidade , Estresse Mecânico
11.
Biosens Bioelectron ; 246: 115874, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039732

RESUMO

Electrical bioimpedance is a non-invasive and radiation-free technique that was proposed to be used in different clinical areas, however, its practical use is limited due to its low capacity to discriminate between tissues. In order to overcome this limitation, our research group proposes to incorporate the contrast media into the electrical bioimpedance procedure. The main objective of the present study was to assess the crystalloid solutions as a possible contrast media to discriminate between different tissue types in the bioimpedance technique. Two medical-grade crystalloid solutions (Hartmann and NaCl 0.9%) were injected into three biological ex vivo models: kidney, liver, and brain. BIOPAC system was used to acquire bioimpedance data before and after the injections. The data was adjusted to the Debye electrical model. The analysis of measured values showed substantial bioimpedance disparities in tissues subjected to isotonic solutions. The NaCl solution exhibited more pronounced changes in electrical parameters compared to the Hartmann solution. Similarly, NaCl solution displayed superior discriminatory capabilities among tissues, with variations of 465%, 157%, and 206%. Distinct spectral modifications were identified, with tissues demonstrating unique responses at each frequency of analysis relative to untreated tissue. Variations in bandwidth alterations were discernible among tissues, providing clear distinctions. In conclusion, the research showed that the crystalloid solution exhibited greater sensitivity and superior tissue contrast at specific frequencies. This study's findings underscore the feasibility of implementing crystalloid solutions to enhance tissue discrimination, similar to the effects of contrast agents.


Assuntos
Técnicas Biossensoriais , Cloreto de Sódio , Soluções Cristaloides , Meios de Contraste , Impedância Elétrica
12.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(5): 886-893, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37879917

RESUMO

In this paper, the differences between air probe and filled probe for measuring high-frequency dielectric properties of biological tissues are investigated based on the equivalent circuit model to provide a reference for the methodology of high-frequency measurement of biological tissue dielectric properties. Two types of probes were used to measure different concentrations of NaCl solution in the frequency band of 100 MHz-2 GHz. The results showed that the accuracy and reliability of the calculated results of the air probe were lower than that of the filled probe, especially the dielectric coefficient of the measured material, and the higher the concentration of NaCl solution, the higher the error. By laminating the probe terminal, liquid intrusion could be prevented, to a certain extent, to improve the accuracy of measurement. However, as the frequency decreased, the influence of the film on the measurement increased and the measurement accuracy decreased. The results of the study show that the air probe, despite its simple dimensional design and easy calibration, differs from the conventional equivalent circuit model in actual measurements, and the model needs to be re-corrected for actual use. The filled probe matches the equivalent circuit model better, and therefore has better measurement accuracy and reliability.


Assuntos
Cloreto de Sódio , Reprodutibilidade dos Testes , Calibragem
13.
J Biophotonics ; 16(12): e202300205, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37643993

RESUMO

To study the influence pattern of femtosecond laser scanning path on the welding effect of skin tissue, this experiment analyzed the influence of scanning path on the surface morphology, degree of thermal damage, tensile strength, and microstructure of skin samples after skin attachment by designing nine scanning paths to weld skin tissue. The results showed that the skin samples connected by interrupted parallel mattress eversion sewing method with d = 0.2 mm showed no obvious color changes in morphology, the skin samples were connected on both front and back sides, the tensile strength was the highest, reaching 12.80 N/cm2 , the thermal damage parameter was low at 1.08 × 10-2 , the microstructure had obvious directionality, and the texture was clear and uniformly distributed.


Assuntos
Soldagem , Lasers , Pele , Resistência à Tração
14.
MethodsX ; 11: 102290, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37577167

RESUMO

QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample processing methods have previously been applied to a range of compounds and matrices. This study presents a modified QuEChERS sample processing method that was validated and employed for 24 per- and polyfluoroalkyl substances (PFAS) for various biological matrices. PFAS are a group of synthetic chemicals that have attracted substantial attention as some compounds are acknowledged to be persistent, toxic, and bioaccumulative. It is crucial to determine PFAS in diverse environmental matrices. Currently, limited sample processing methods for PFAS in biological matrices are available and the majority only focus on a few compounds such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). Thus, there is a demand to develop a sample processing method which is effective for many commonly tested PFAS compounds in environmental biological samples. In this study, the detailed sample processing procedures and method performance are described. The highlights of this method are: •The extraction solvent and salts were adjusted for PFAS extraction from environmental biological matrices.•The modified QuEChERS method is effective for extraction and cleanup from a variety of matrices including algae, plants, invertebrates, amphibians, and fish.

15.
J Mech Behav Biomed Mater ; 146: 106028, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37531771

RESUMO

The aortic wall exhibits a unique elastic behavior, periodically expanding in aortic diameter by approximately 10% during heartbeats. This elastic behavior of the aortic wall relies on the distinct yet interacting mechanical properties of its three layers: intima, media, and adventitia. Aortic aneurysms develop as a result of multifactorial remodeling influenced by mechanical vulnerability of the aortic wall. Therefore, investigating the mechanical response of the aneurysmal wall, in conjunction with changes in microstructural parameters on both the intimal and adventitial sides, may offer valuable insights into the mechanisms of aortic aneurysm development or rupture. This study aimed to develop a biaxial tensile testing system to measure the mechanical properties of both sides of the tissue to gain insights concerning the interactions in anisotropic layered tissue. The biaxial tensile test set-up consisted of four motors, four cameras, four load cells, and a toggle switch. Porcine ascending aortas were chosen as the test subject. Graphite particles with diameters of approximately 5-11 [µm] were randomly applied to both sides of the aorta. Strain measurements were obtained using the stereo digital-image correlation method. Because stretching a rectangular specimen with a thread inevitably concentrates and localizes stress, to reduce this effect the specimen's shape was investigated using finite element analysis. The finite element analysis showed that a cross-shaped specimen with diagonally cut edges would be suitable. Therefore, we prepared specimens with this novel shape. This test system showed that mechanical response of the aortic tissue was significantly different between the intimal and adventitial side in the high-strain range, due to the disruption of collagen fibers. The adventitia side exhibited a smaller elastic modulus than the intimal side, accompanied by disruption of collagen fibers in the adventitia, which were more pronounced in the longitudinal direction. In contrast, in the mid-strain range, the elastic modulus did not differ between the intimal and adventitial sides, irrespective of longitudinal or circumferential direction, and collagen fibers were not disrupted but elongated. A biaxial tensile test system, which measures the mechanical properties of both sides of biological tissues and the shape of the specimen for reducing the concentration of stress at the chuck region, was developed in this study. The biaxial tensile testing system developed here is useful for better understanding the influences of mechanical loads and tissue degeneration on anisotropic, layered biological tissues.


Assuntos
Aorta , Aneurisma Aórtico , Suínos , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Colágeno , Estresse Mecânico , Resistência à Tração
16.
ACS Appl Mater Interfaces ; 15(33): 39472-39479, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552864

RESUMO

Transmission near-infrared (NIR) imaging technology has great potential for biomedical imaging because of its lower water absorption coefficient and highly reduced photon scattering effect in biological tissues compared to visible light. The extent of biological tissue photon scattering is inversely proportional to wavelength; therefore, in principle, imaging with long-wavelength NIR helps improve the resolution of the optical image, but deep tissue high-resolution luminescence imaging is still very challenging technically. Here, we report the discovery of a Ba2MgWO6:Ni2+ double perovskite phosphor that emits broadband long-wavelength NIR (1200-2000 nm) under 365 nm near-ultraviolet (UV) excitation, with a full width at half-maximum of 255 nm. The luminescence quantum efficiency of the phosphor with optimized composition reached 16.67%. The analysis of the crystal structure of Ba2MgWO6:Ni2+ suggests that Ni2+ ions preferentially occupy the W6+ site in octahedrons with a weak crystal field, which leads to a large Stokes shift. An as-prepared long-wavelength NIR pc-LED device was built by packaging an optimized phosphor with a low-power near-UV-LED chip, which was tested to generate clear imaging of venous vessels in human fingers. These unique properties of the Ba2MgWO6:Ni2+ double perovskite phosphor makes it a promising application in the field of imaging sources for body tissue..


Assuntos
Níquel , Óxidos , Humanos , Água , Compostos de Cálcio
17.
Mater Today Bio ; 21: 100691, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37455815

RESUMO

Hernia reconstruction is one of the most frequently practiced surgical procedures worldwide. Plastic surgery plays a pivotal role in reestablishing desired abdominal wall structure and function without the drawbacks traditionally associated with general surgery as excessive tension, postoperative pain, poor repair outcomes, and frequent recurrence. Surgical meshes have been the preferential choice for abdominal wall hernia repair to achieve the physical integrity and equivalent components of musculofascial layers. Despite the relevant progress in recent years, there are still unsolved challenges in surgical mesh design and complication settlement. This review provides a systemic summary of the hernia surgical mesh development deeply related to abdominal wall hernia pathology and classification. Commercial meshes, the first-generation prosthetic materials, and the most commonly used repair materials in the clinic are described in detail, addressing constrain side effects and rational strategies to establish characteristics of ideal hernia repair meshes. The engineered prosthetics are defined as a transit to the biomimetic smart hernia repair scaffolds with specific advantages and disadvantages, including hydrogel scaffolds, electrospinning membranes, and three-dimensional patches. Lastly, this review critically outlines the future research direction for successful hernia repair solutions by combing state-of-the-art techniques and materials.

18.
J Theor Biol ; 572: 111581, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37481232

RESUMO

The mesoderm invagination of the Drosophila embryo is known as an archetypal morphogenic process. To explore the roles of the active cellular forces and the regulation of these forces, we developed an integrated vertex model that combines the regulation of morphogen expression with cell movements and tissue mechanics. Our results suggest that a successful furrow formation requires an apical tension gradient, decreased basal tension, and increased lateral tension, which corresponds to apical constriction, basal expansion, and apicobasal shortening respectively. Our model also considers the mechanical feedback which leads to an ectopic twist expression with external compression as observed in experiments. Our model predicts that ectopic invagination could happen if an external compressive gradient is applied.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Desenvolvimento Embrionário , Proteínas de Drosophila/metabolismo , Morfogênese , Mesoderma , Drosophila melanogaster , Embrião não Mamífero
19.
Acta Biomater ; 167: 147-157, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37355178

RESUMO

Tissue failure and damage are inherent parts of vascular diseases and tightly linked to clinical events. Additionally, experimental set-ups designed to study classical engineering materials are suboptimal in the exploration of vessel wall fracture properties. The classical Compact Tension (CT) test was augmented to enable stable fracture propagation, resulting in the symmetry-constraint Compact Tension (symconCT) test, a suitable set-up for fracture testing of vascular tissue. The test was combined with Digital Image Correlation (DIC) to study tissue fracture in 45 porcine aorta specimens. Test specimens were loaded in axial and circumferential directions in a physiological solution at 37 °C. Loading the aortic vessel wall in the axial direction resulted in mode I tissue failure and a fracture path aligned with the circumferential vessel direction. Circumferential loading resulted in mode I-dominated failure with multiple deflections of the fracture path. The aorta ruptured at a principal Green-Lagrange strain of approximately 0.7, and strain rate peaks that develop ahead of the crack tip reached nearly 400 times the strain rate on average over the test specimen. It required approximately 70% more external work to fracture the aorta by circumferential than axial load; normalised with the fracture surface, similar energy levels are, however, observed. The symconCT test resulted in a stable fracture propagation, which, combined with DIC, provided a set-up for the in-depth analysis of vascular tissue failure. The high strain rates ahead of the crack tip indicate the significance of rate effects in the constitutive description of vascular tissue fracture. STATEMENT OF SIGNIFICANCE: This paper represents a significant step forward in understanding the fracture properties of porcine aorta. Inspired by the Compact Tension test, we developed an ad hoc experimental protocol to investigate stable crack propagation in soft materials, providing new insights into the mechanical processes that lead to the rupture of vascular tissue. The set-up enables the assessment of strains and strain rates ahead of the crack tip, and our findings could improve the clinical risk assessment of vascular pathologies as well as optimise medical device design.


Assuntos
Fraturas Ósseas , Animais , Suínos , Estresse Mecânico , Aorta/diagnóstico por imagem , Teste de Materiais
20.
Int J Bioprint ; 9(2): 669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065673

RESUMO

306Three-dimensional (3D)-printed vascular models for cardiovascular surgery planning and endovascular procedure simulations often lack realistic biological tissues mimicking material properties, including flexibility or transparency, or both. Transparent silicone or silicone-like vascular models were not available for end-user 3D printers and had to be fabricated using complex and cost-intensive workarounds. This limitation has now been overcome by novel liquid resins with biological tissue properties. These new materials enable simple and low-cost fabrication of transparent and flexible vascular models using end-user stereolithography 3D printers and are promising technological advances toward more realistic patient-specific, radiation-free procedure simulations and planning in cardiovascular surgery and interventional radiology. This paper presents our patient-specific manufacturing process of fabricating transparent and flexible vascular models using freely available open-source software for segmentation and 3D post-processing, aiming to facilitate the integration of 3D printing into clinical care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA