Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Ecol Evol ; 14(7): e11692, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38983706

RESUMO

Water availability strongly influences the survival, growth, and reproduction of most terrestrial plant species. Experimental evidence has well documented the effect of changes in total amount of water availability on non-native vs. native plants. However, little is known about how fluctuations in water availability affect these two groups, although more extreme fluctuations in water availability increasingly occur with prolonged drought and extreme precipitation events. Here, we grew seven non-native and seven native plant species individually in the greenhouse. Then, we exposed them to four watering treatments, each treatment with the same total amount of water, but with different divisions: W1 (added water 16 times with 125 mL per time), W2 (8 times, 250 mL per time), W3 (4 times, 500 mL per time), and W4 (2 times, 1000 mL per time). We found that both non-native and native plants produced the most biomass under medium frequency/magnitude watering treatments (W2 and W3). Interestingly, non-native plants produced 34% more biomass with the infrequent, substantial watering treatment (W4) than with frequent, minor watering treatment (W1), whereas native plants showed opposite patterns, producing 26% more biomass with W1 than with W4. Differences in the ratio of root to shoot under few/large and many/small watering treatments of non-native vs. native species probably contributed to their different responses in biomass production. Our results advance the current understanding of the effect of water availability on non-native plants, which are affected not only by changes in amount of water availability but also by fluctuations in water availability. Furthermore, our results indicate that an increased few/large precipitation pattern expected under climate change conditions might further promote non-native plant invasions. Future field experiments with multiple phylogenetically controlled pairs of non-native and native species will be required to enhance our understanding of how water availability fluctuations impact on non-native invasions.

2.
Ecol Evol ; 14(7): e70066, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035043

RESUMO

There is a lack of research on whether tree size affects lamina and petiole biomass allocation patterns, whereas the trade-off between leaf biomass allocated to the lamina and the petiole is of significance when considering the hydraulic and mechanical function of the leaf as a whole. Here, Camptotheca acuminata Decne was selected for study because of the availability of trees differing in size growing under the same conditions. A total of 600 leaves for two tree size groups and 300 leaves per group differing in height and trunk diameter were collected. The lamina fresh mass (LFM), lamina dry mass (LDM), lamina area (LA), petiole fresh mass (PFM), and petiole length (PL) of each leaf was measured, and reduced major axis regression protocols were used to determine the scaling relationships among the five functional traits. The bootstrap percentile method was used to determine if the scaling exponents of the traits differed significantly between the two tree size groups. The results indicated that (i) there was a significant difference in the LFM, LDM, PFM, PL, LMA, LFMA and PFM/LFM between large and small trees, but no significant difference in LA; (ii) the LA versus LFM, LA versus LDM, LFM versus PFM, LA versus PFM, and PL versus PFM scaling relationships of the two groups were allometric (i.e., not isometric); (iii) there were significant differences in the scaling exponents of LA versus LFM, LA versus PFM, PL versus PFM between the two groups, but there was no significant difference in the LFM versus PFM scaling relationship between the two groups of trees. The data were also consistent with the phenomenon known as "diminishing returns". These data indicate that tree size influences leaf biomass allocation patterns in ways that can potentially influence overall plant growth, and therefore have an important bearing on life-history strategies.

3.
Chemosphere ; 363: 142896, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029707

RESUMO

Increasing concentration of ground level O3 and its negative impacts on agricultural output is well documented, however, the response of leguminous crop plants is still sparsely cited. Given their nutritional richness, legume seeds are widely esteemed as a crucial dietary staple worldwide, prized for their abundance of oil, protein, dietary fiber, and low-fat characteristics. Termed as the "poor man's meat" due to their high-quality protein, they hold immense economic value. Acknowledging the significance of legumes, a field experiment was conducted to understand the physiological and antioxidant responses, stomatal characteristics, and yield response in three cultivars of Pisum sativum L. (K Agaiti, K Uday and K Damini), exposed to elevated ozone (O3). In the present study, Pisum sativum cultivars were subjected to ambient (control) and elevated (+15 ppb) concentrations of O3, using separate sets of OTCs. Elevated O3 stimulated the activity of the enzymes of Halliwell Asada pathway, which were responsible for the differential response of the three experimental cultivars. While K Agaiti and K Uday focused on upregulating their antioxidant defense, K Damini followed the strategy of biomass allocation. Test weight showed that K Damini was most efficient in succoring the yield losses under elevated O3. Under elevated O3, test weight reduced by 8.91%, 7.52%, and 5.1%, respectively, in K Agaiti, followed by K Uday and K Damini, rendering K Agaiti most sensitive to O3 stress. The present study not only helps us to elucidate the O3 sensitivity of the selected experimental cultivars, it also helps us in screening O3 tolerant cultivars for future agricultural practices.

4.
Proc Natl Acad Sci U S A ; 121(25): e2314036121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857391

RESUMO

Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values using 3,013 plots and 26,337 species-specific measurements across eight sites on the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems, climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Furthermore, we observed a threefold strengthening of the warming effect on η over the past 27 y. Soil moisture was found to modulate the sensitivity of η to soil temperature in alpine meadows and alpine steppes, but not in alpine wetlands. Our results contribute to a better understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems and climate feedback.


Assuntos
Biomassa , Ecossistema , Pergelissolo , Tibet , Áreas Alagadas , Plantas/metabolismo , Mudança Climática , Temperatura , Ciclo do Carbono , Desenvolvimento Vegetal/fisiologia , Solo/química , Pradaria
5.
Front Plant Sci ; 15: 1399155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911984

RESUMO

Introduction: The sowing date plays a crucial role in influencing the growth and reproduction of plants, with its specific impact on biomass allocation and allometric growth remaining unclear. Understanding these effects is essential for optimizing agricultural practices and enhancing crop productivity. Methods: To investigate the effects of sowing dates on biomass allocation and allometric growth, a field experiment was conducted with sequential sowings of Fagopyrum esculentum from April 12th to August 11th in 2018. Biomass measurements were taken across various plant organs, and corresponding allocation calculations were made. A detailed analysis of the allometric growth relationship involving organ biomass variations was performed. Results: The study revealed that the accumulation and allocation of organ biomass in buckwheat were significantly impacted by the sowing dates. Delayed planting led to reduced vegetative growth and increased biomass allocation towards reproduction. Allometric parameters such as exponent, constant, and individual size of buckwheat were notably affected by delayed planting. Interestingly, the allometric exponents governing the relationships between reproductive vs. vegetative biomass and belowground vs. aboveground biomass exhibited varying trends across different sowing dates. Discussion: Notably, late sowings resulted in significantly higher reproductive biomass compared to early and middle sowings. These findings highlight the nuanced relationship between plant size and reproductive biomass under different sowing dates, emphasizing the critical role of planting timing in shaping mature plant sizes and reproductive outcomes. The study underscores the importance of considering sowing dates in agricultural practices to optimize plant growth and productivity.

6.
Tree Physiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916255

RESUMO

Tree growth is often limited by phosphorus (P) availability. The trade-off between P homeostasis and growth is unknown. Ectomycorrhizal (EM) fungi facilitate P availability but this trait varies among different fungal species and isolates. Here, we tested the hypotheses that (i) colonization with EMF boosts plant growth under P-limited conditions and that (ii) the poplars show P homeostasis because increased P uptake is used for growth and not for P accumulation in the tissues. We used two P treatments (HP: 64 µM Pi, LP: 0.64 µM Pi in the nutrient solution) and four fungal treatments (Paxillus involutus MAJ, Paxillus involutus NAU, Laccaria bicolor dikaryon LBD, Laccaria bicolor monokaryon LBM) in addition to non-inoculated poplar plants (NI) to measure growth, biomass, gas exchange and P contents. HP stimulated growth compared with LP conditions. Poplars colonized with MAJ, NAU and NI showed higher growth and biomass production than those with LBD or LBM. Photosynthesis rates of poplars with lower biomass production were similar to or higher than those of plants with higher growth rates. The tissue concentrations of P were higher under HP than LP conditions and rarely affected by ectomycorrhizal colonization. Under LP, the plants produced 44% greater biomass per unit of P than under HP. At a given P supply, the tissue concentration was stable irrespective of the growth rate indicating P homeostasis. L. bicolor caused growth inhibition, irrespective the P availabilities. These results suggest that in young poplars distinct species-specific ectomycorrhizal traits overshadowed potential growth benefits.

7.
Plant Physiol Biochem ; 212: 108725, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772164

RESUMO

Elevated CO2 concentrations may inhibit photosynthesis due to nitrogen deficiency, but legumes may be able to overcome this limitation and continue to grow. Our study confirms this conjecture well. First, we placed the two-year-old potted saplings of Ormosia hosiei (O. hosiei) (a leguminous tree species) in the open-top chamber (OTC) with three CO2 concentrations of 400 (CK), 600 (E1), and 800 µmol·mol-1 (E2) to simulate the elevated CO2 concentration environment. After 146 days, the light saturation point (LSP), light compensation point (LCP), apparent quantum efficiency (AQE), and dark respiration rate (Rd) of O. hosiei were increased under increasing CO2 concentration and obtain the maximum ribulose diphosphate (RuBP) carboxylation rate (Vc max) and RuBP regenerated photosynthetic electron transfer rate (Jmax) were also significantly increased under E2 treatment (P < 0.05). This results in a significant increase of the maximum assimilation rate (Amax) under elevated CO2 concentrations. Sucrose phosphate synthase (SPS) activity in sucrose metabolism increased in the leaves, more soluble sugars, starches, and sucrose was produced, but sucrose content only in leaves increased at E2, and more carbon flows to the roots. The activity of the NH4+ assimilating enzymes glutamine synthetase (GS), glutamate synthetase (GOGAT), and glutamate dehydrogenase (GDH) in the leaves of O. hosiei increases under elevated CO2 concentrations to promote nitrogen synthesis that reduces the content of ammonium nitrogen and increases the content of nitrate nitrogen. In addition, under E1 conditions, sucrose synthase (SS), direction of synthesis activity was highest and sucrose invertase (INV) activity was lowest, this means that the balance of C and N metabolism is maintained. While under E2 conditions SS activity decreased and INV activity increased, this increased C/N and nitrogen use efficiency. So, the elevated CO2 concentration promotes the accumulation of O. hosiei biomass, especially in the aboveground part, but did not have a significant effect on the accumulation of root biomass. This means that O. hosiei is able to cope under the elevated CO2 concentration without showing photosynthetic adaptation during the experimental period.


Assuntos
Biomassa , Dióxido de Carbono , Carbono , Nitrogênio , Fotossíntese , Nitrogênio/metabolismo , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Glucosiltransferases/metabolismo , Fabaceae/metabolismo , Fabaceae/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
8.
New Phytol ; 243(1): 466-476, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757753

RESUMO

Crops generally have seeds larger than their wild progenitors´ and with reduced dormancy. In wild plants, seed mass and allocation to the seed coat (a proxy for physical dormancy) scale allometrically so that larger seeds tend to allocate less to the coats. Larger seeds and lightweight coats might thus have evolved as correlated traits in crops. We tested whether 34 crops and 22 of their wild progenitors fit the allometry described in the literature, which would indicate co-selection of both traits during crop evolution. Deviations from the allometry would suggest that other evolutionary processes contribute to explain the emergence of larger, lightweight-coated seeds in crops. Crops fitted the scaling slope but deviated from its intercept in a consistent way: Seed coats of crops were lighter than expected by their seed size. The wild progenitors of crops displayed the same trend, indicating that deviations cannot be solely attributed to artificial selection during or after domestication. The evolution of seeds with small coats in crops likely resulted from a combination of various pressures, including the selection of wild progenitors with coats smaller than other wild plants, further decreases during early evolution under cultivation, and indirect selection due to the seed coat-seed size allometry.


Assuntos
Evolução Biológica , Biomassa , Produtos Agrícolas , Sementes , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/anatomia & histologia , Sementes/fisiologia
9.
Ecol Evol ; 14(4): e11312, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651163

RESUMO

Comparisons of plant traits between native and invasive congeners are useful approaches for identifying characteristics that promote invasiveness. We compared germination patterns and seedling growth of locally sympatric populations of native Mimosa himalayana and two varieties of invasive M. diplotricha (var. diplotricha and var. inermis) growing in southeastern Nepal. Seeds were germinated under a 12-h photoperiod or complete dark, low (25/15°C day/night) and high (30/20°C) temperatures, different water stress levels (0, -0.1, -0.25, -0.5, -0.75 and -1.0 MPa), and soil depths (0, 2, and 4 cm). Plant height, biomass allocations, and relative growth rate (RGR) of seedlings were measured. Invasive M. diplotricha had higher germination percentage, rate, and shorter germination time compared with the native species. Germination of both congeners declined as water stress increased, but the decline was more pronounced in native species. Seedling emergence declined with increasing depth in all taxa. The seedlings of invasive species were taller with higher leaf number and allocated greater proportion of biomass to shoot, whereas the native congener allocated greater biomass to root. The RGR was nearly twice as high in invasive species as it was in the native congener. Seedling height and number of leaves were always higher in invasive than in native species, and the native-invasive differences increased over time. Better germination and higher growth performance of invasive species than the congeneric native one suggests that seed germination and seedling growth can be useful traits for the prediction of species' invasiveness in their introduced range during risk assessment process.

10.
Int J Biometeorol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630139

RESUMO

Dry spells strongly influence biomass production in forest ecosystems. Their effects may last several years following a drought event, prolonging growth reduction and therefore restricting carbon sequestration. Yet, our understanding of the impact of dry spells on the vitality of trees' above-ground biomass components (e.g., stems and leaves) at a landscape level remains limited. We analyzed the responses of Pinus sylvestris and Picea abies to the four most severe drought years in topographically complex sites. To represent stem growth and canopy greenness, we used chronologies of tree-ring width and time series of the Normalized Difference Vegetation Index (NDVI). We analyzed the responses of radial tree growth and NDVI to dry spells using superposed epoch analysis and further explored this relationship using mixed-effect models. Our results show a stronger and more persistent response of radial growth to dry spells and faster recovery of canopy greenness. Canopy greenness started to recover the year after the dry spell, whereas radial tree growth remained reduced for the two subsequent years and did not recover the pre-drought level until the fourth year after the event. Stem growth and canopy greenness were influenced by climatic conditions during and after drought events, while the effect of topography was marginal. The opposite responses of stem growth and canopy greenness following drought events suggest a different impact of dry spells on trees´ sink and source compartments. These results underscore the crucial importance of understanding the complexities of tree growth as a major sink of atmospheric carbon.

11.
Front Plant Sci ; 15: 1340058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550291

RESUMO

Under-canopy afforestation using different tree species is a key approach in close-to-nature management to improve the structural and functional stability of plantation forests. However, current research on understory afforestation mainly focuses on the seedling stage, with limited attention to saplings or young trees. In this study, we evaluated the growth characteristics and leaf traits of 14-year-old Pinus sylvestris var. Mongolica trees under four different upper forest density (UFD) treatments: 0 trees/hm2 (canopy openness 100%, CK), 150 trees/hm2 (canopy openness 51.9%, T1), 225 trees/hm2 (canopy openness 43.2%, T2), and 300 trees/hm2 (canopy openness 28.4%, T3). We found that the survival rate of P. sylvestris in the T3 was significantly lower than in the other treatments, with a decrease of 30.2%, 18.3%, and 19.5% compared to CK, T1, and T2, respectively. The growth of P. sylvestris in the T1 treatment exhibited superior performance. Specifically, T1 showed a significant increase of 18.8%, 5.5%, and 24.1% in tree height, diameter at breast height, and crown width, respectively, compared to the CK. The mean trunk biomass ratio in the understory was significantly higher than that in full light by 15.4%, whereas the mean leaf biomass ratio was significantly lower by 12.3%. Understory P. sylvestris trees tended to allocate more biomass to the trunk at the expense of decreasing leaf biomass, which would facilitate height growth to escape the shading environment, although the promotion was relatively limited. Leaf length, leaf width, leaf area, leaf thickness, mesophyll tissue thickness, epidermis thickness, and leaf carbon content were the highest in the CK and tended to decrease with increasing UFD, indicating that a high-light environment favored leaf growth and enhanced carbon accumulation. In summary, young P. sylvestris trees adapted to moderate shading conditions created by the upper canopy, and the T1 treatment was optimal for the growth of understory P. sylvestris. This study provides insights into different adaptive strategies of young P. sylvestris trees to changes in light environment, providing practical evidence for under-canopy afforestation using light-demanding trees during pure plantation transformation.

12.
Glob Chang Biol ; 30(3): e17206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445332

RESUMO

Symbiotic nitrogen (N) fixation (SNF), replenishing bioavailable N for terrestrial ecosystems, exerts decisive roles in N cycling and gross primary production. Nevertheless, it remains unclear what determines the variability of SNF rate, which retards the accurate prediction for global N fixation in earth system models. This study synthesized 1230 isotopic observations to elucidate the governing factors underlying the variability of SNF rate. The SNF rates varied significantly from 3.69 to 12.54 g N m-2 year-1 across host plant taxa. The traits of host plant (e.g. biomass characteristics and taxa) far outweighed soil properties and climatic factors in explaining the variations of SNF rate, accounting for 79.0% of total relative importance. Furthermore, annual SNF yield contributed to more than half of N uptake for host plants, which was consistent across different ecosystem types. This study highlights that the biotic factors, especially host plant traits (e.g. biomass characteristics and taxa), play overriding roles in determining SNF rate compared with soil properties. The suite of parameters for SNF lends support to improve N fixation module in earth system models that can provide more confidence in predicting bioavailable N changes in terrestrial ecosystems.


Assuntos
Ecossistema , Fixação de Nitrogênio , Biomassa , Planeta Terra , Solo
13.
Front Plant Sci ; 15: 1345189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425793

RESUMO

Introduction: While no tillage (NT) can significantly influence soil structure stratification compared to conventional tillage (CT), a comprehensive understanding of the degree of root trait plasticity and trade-offs of lateral roots of crops at various growth stages along a deep soil profile in response to NT remains elusive. This knowledge gap is important for understanding soil resource acquisition strategies and yield of crops. Methods: We systematically investigated the traits of lateral roots at jointing and flowering stages in a long-term (12 years) experiment in Northeast China where maize (Zea mays) has been continuously planted under CT and NT with or without maize residue mulch on soil surface. We also measured soil penetration resistance and bulk density. Results: Soil penetration resistance was reduced at the jointing stage, and was increased at the flowering stage under NT especially at a depth of 10 - 40 cm. Root length density decreased under NT across the two growth stages by on average 22%. In contrast, specific root length and diameter showed greater plasticity, ranging from -14% to 20% and from -11% to 8%, respectively, relative to those under CT. Discussion: These responses could be attributed to changes in root length proportions with different diameters associated with differences in soil penetration resistance between tillage practices. The negative relationships between root traits were stronger under CT than NT, and became weaker from the jointing stage to the flowering stage. To the best of our knowledge, for the first time, our study provides empirical evidence for pivotal root trait plasticity and trade-offs across growth stages as key indicators of changes in soil structure and resources in response to NT. These insights contribute to a better understanding of soil resource acquisition strategies of crops under NT.

14.
Front Plant Sci ; 15: 1314014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419777

RESUMO

Introduction: In the face of climate changes and limited water availability for irrigated crop production, enhanced drought tolerance and adaptation is vital to improve wheat productivity. The objective of this study was to determine the responses of newly bred and advanced mutant lines of wheat based on agronomic traits and biomass allocation under drought-stressed and non-stressed environments for production and breeding. Methods: Fifty-three mutant lines, including the parental check and six check varieties, were evaluated under non-stressed (NS) and drought stressed (DS) conditions in the field and controlled environments using a 20 x 3 alpha lattice design with two replicates. The following agronomic data were collected: days to 50% heading (DTH), days to maturity (DTM), plant height (PH), number of productive tillers (PTN), shoot biomass (SB), root biomass (RB), total biomass (TB), root: shoot ratio (RSR), spike length (SL), thousand seeds weight (TSW) and grain yield (GY). Data were analyzed and summarized using various statistical procedures and drought tolerance indices were computed based on grain yield under NS and DS conditions. Results: Significant (P < 0.05) differences were recorded among the mutant lines for most assessed traits under NS and DS conditions. Grain yield positively and significantly (p < 0.001) correlated with PTN (r = 0.85), RB (r = 0.75), SB (r = 0.80), SL (r =0.73), TB (r = 0.65), and TSW (r = 0.67) under DS condition. Principal component analysis revealed three components contributing to 78.55% and 77.21% of the total variability for the assessed agronomic traits under DS and NS conditions, respectively. The following traits: GY, RB, SB, and PTN explained most of the variation with high loading scores under DS condition. Geometric mean productivity (GMP), mean productivity (MP), harmonic mean (HM), and stress tolerance index (STI) were identified as the best drought tolerance indices for the identification of tolerant lines with positive correlations with GY under NS and DS conditions. Discussion: Among the advanced lines tested, LMA16, LMA37, LMA47, LMA2, and LMA42 were selected as the superior lines with high performance and drought tolerance. The selected lines are recommended for multi-environment trails and release for production in water-limited environments in South Africa.

15.
Ann Bot ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407819

RESUMO

BACKGROUND AND AIMS: Understanding biomass allocation among plant organs is crucial for comprehending plant growth optimization, survival and responses to global change drivers. Yet, mechanisms governing mass allocation in vascular plants from extreme elevations exposed to cold and drought stresses remain poorly understood. METHODOLOGY: We analyzed organ mass weights and fractions in 258 Himalayan herbaceous species across diverse habitats (wetland, steppe, alpine), growth forms (annual, perennial taprooted, rhizomatous, cushiony), and climatic gradients (3500-6150 m elevation) to explore whether biomass distribution adhered to fixed allometric or optimal partitioning rules, and how variation in size, phylogeny, and ecological preferences influence their strategies for resource allocation. KEY FINDINGS: Following the optimal partitioning theory, Himalayan plants distribute more biomass to key organs vital for acquiring and preserving limited resources necessary for their growth and survival. Allocation strategies are mainly influenced by plant growth forms and habitat conditions, notably temperature, water availability, and evaporative demands. Alpine plants primarily invest in belowground stem bases for storage and regeneration, reducing aboveground stems while increasing leaf mass fraction to maximize carbon assimilation in their short growing season. Conversely, arid steppe plants prioritize deep roots over leaves to secure water and minimize transpiration. Wetland plants allocate resources to aboveground stems and belowground rhizomes, enabling them to resist competition and grazing in fertile environments. CONCLUSIONS: Himalayan plants from extreme elevations optimize their allocation strategies to acquire scarce resources under specific conditions, efficiently investing carbon from supportive to acquisitive and protective functions with increasing cold and drought. Intraspecific variation and shared ancestry did not significantly alter Himalayan plants' biomass allocation strategies. Despite diverse evolutionary histories, plants from similar habitats have developed comparable phenotypic structures to adapt to their specific environments. This study offers new insights into plant adaptations in diverse Himalayan environments and underscores the importance of efficient resource allocation for survival and growth in challenging conditions.

16.
Ecol Appl ; 34(1): e2920, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750229

RESUMO

Transgenerational plasticity (TGP) allows a plant to acclimate to external variable environments and is a potential mechanism that explains the range expansion and invasion success of some exotic plants. Most studies explored the traits of TGP associated with the success of exotic plant invasions by comparison studies among exotic, native, invasive, and noninvasive species. However, studies on the TGP of invasive plants in different resource environments are scarce, and the biological mechanisms involved are not well understood. This study aimed to determine the role of TGP in the invasiveness of Xanthium strumarium in northeast China. We measured the plant morphology of aboveground parts and the growth of three generations of the invader under different environmental conditions. The results showed that the intergenerational plasticity of X. strumarium was stronger under stress conditions. We found that the X. strumarium parent generation (F0) grown under water and/or nutrient deficiency conditions transferred the environmental information to their offspring (F1 and F2). The F1 generation grown under high-resource conditions has greater height with larger crown sizes, thicker basal diameters, and higher biomass. Both water and nutrients can affect the intergenerational transmission of plant plasticity, nutrients play a more important role compared with water. The high morphological intergenerational plasticity of X. strumarium under a pressure environment can help it quickly adapt to the new environment and accelerate the rapid expansion of the population in the short term. The root:shoot ratio and reproductive and nutrient distribution of the X. strumarium F0 and F1 generations showed high stability when the growth environment of the F0 generation differed from that of the F1 generation. The stable resource allocation strategy can ensure that the obtained resources are evenly distributed to each organ to maintain the long-term existence of the community. Therefore, the study of intergenerational transmission plasticity is of great significance for understanding the invasion process, mechanism, and prevention of invasive plants.


Assuntos
Xanthium , Biomassa , Plantas , Adaptação Fisiológica , Água
17.
Ann Bot ; 133(2): 365-378, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38099505

RESUMO

BACKGROUND AND AIMS: Plants can propagate generatively and vegetatively. The type of propagation and the resulting propagule can influence the growth of the plants, such as plant architectural development and pattern of biomass allocation. Potato is a species that can reproduce through both types of propagation: through true botanical seeds and seed tubers. The consequences of propagule type on the plant architectural development and biomass partitioning in potatoes are not well known. We quantified architectural differences between plants grown from these two types of propagules from the same genotype, explicitly analysing branching dynamics above and below ground, and related these differences to biomass allocation patterns. METHODS: A greenhouse experiment was conducted, using potato plants of the same genotype but grown from two types of propagules: true seeds and seed tubers from a plant grown from true seed (seedling tuber). Architectural traits and biomass allocation to different organs were quantified at four developmental stages. Differences between true-seed-grown and seedling-tuber-grown plants were compared at the whole-plant level and at the level of individual stems and branches, including their number, size and location on the plant. KEY RESULTS: A more branched and compact architecture was produced in true-seed-grown plants compared with seedling-tuber-grown plants. The architectural differences between plants grown from true seeds and seedling tubers appeared gradually and were attributed mainly to the divergent temporal-spatial distribution of lateral branches above and below ground on the main axis. The continual production of branches in true-seed-grown plants indicated their indeterminate growth habit, which was also reflected in a slower shift of biomass allocation from above- to below-ground branches, whereas the opposite trend was found in seedling-tuber-grown plants. CONCLUSIONS: In true-seed-grown plants, lateral branching was stronger and determined whole-plant architecture and plant function with regard to light interception and biomass production, compared with seedling-tuber-grown plants. This different role of branching indicates that a difference in preference between clonal and sexual reproduction might exist. The divergent branching behaviours in true-seed-grown and seedling-tuber-grown plants might be regulated by the different intensity of apical dominance, which suggests that the control of branching can depend on the propagule type.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Tubérculos , Fenótipo , Genótipo , Desenvolvimento Vegetal , Plântula
18.
Plants (Basel) ; 12(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068563

RESUMO

The allocation of plant biomass above and below ground reflects their strategic resource utilization, crucial for understanding terrestrial carbon flux dynamics. In our comprehensive study, we analyzed biomass distribution patterns in 580 broadleaved and 345 coniferous forests across China from 2005 to 2020, aiming to discern spatial patterns and key drivers of belowground biomass proportion (BGBP) in these ecosystems. Our research revealed a consistent trend: BGBP decreases from northwest to southeast in both forest types. Importantly, coniferous forests exhibited significantly higher BGBP compared to broadleaved forests (p < 0.001). While precipitation and soil nutrients primarily influenced biomass allocation in broadleaved forests, temperature and soil composition played a pivotal role in coniferous forests. Surprisingly, leaf traits had a negligible impact on BGBP (p > 0.05). Climatic factors, such as temperature and rainfall, influenced biomass partitioning in both strata by altering soil nutrients, particularly soil pH. These findings provide valuable insights into understanding carbon sequestration dynamics in forest ecosystems and improving predictions of the future trajectory of this critical carbon cycle component.

19.
Ecol Evol ; 13(12): e10774, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053791

RESUMO

In forested ecosystems, shrubs must succeed in persisting in low-light environments, while simultaneously having the ability to rapidly expand and occupy newly created canopy openings, yet little is known about the traits that make this possible. We hypothesize that shrub species that are abundant in the understory exhibit a specific set of functional traits that define their ability to persist during unfavorable periods and to rapidly exploit newly created habitats. We tested this by comparing field-measured functional traits such as biomass allocation, leaf display, crown morphology, and leaf traits, across individual size classes and two gap-forest environments of five shrub species. We observed significant differences in traits between species, size classes, and gap-forest environments. These differences were primarily related to biomass allocation traits, followed by leaf display, crown morphology, and leaf traits. Abundant shrubs like mountain maple (Acer spicatum) and hazelnut (Corylus cornuta) invested significantly more biomass in roots, had a larger total leaf area, and displayed leaves in a more efficient manner to intercept light. The high investment in root biomass can be interpreted as shrubs exploiting the persistence and colonization strategy through resprouting. Permanent sub-canopy status likely explains the importance of efficient leaf display, wherein abundant shrubs had a large leaf area with minimal support structures.

20.
Heliyon ; 9(11): e21822, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034734

RESUMO

Aims: Nitrogen (N) supply and precipitation pattern (amount and frequency) both affect plant growth. However, N deposition is increasing and precipitation regimes are changing in the context of global change. An experiment was conducted to access how the growth of Robinia pseudoacacia, a widely distributed and cultivated N2-fixing alien species, is affected by both the pattern of precipitation and N supplies. Methods: Seedlings were grown in a glasshouse at four different N levels combined with different precipitation regimes, including three precipitation amounts, and two precipitation frequencies. After treatment for 75 days, plant height, biomass allocation, leaf and soil nutrient concentrations were measured. Results: Plants under high precipitation frequency had greater biomass compared with plants lower precipitation frequency, despite receiving the same amount of precipitation. Higher N supply reduced biomass allocation to nodules. Under low precipitation level, nodule growth and N2 fixation of R. pseudoacacia was more inhibited by high N deposition compared with plants under higher precipitation level. Even slightly N deposition under higher precipitation inhibited N2 fixation but it was insufficient to meet the N needs of the plants. Conclusions: Even at low levels, N deposition might inhibit N2 fixation of plants but low N in soil cannot meet the N requirements of plants, and caused N2 fixation limitation in plants during seedling stage. There was likely a transition from N2 fixation to acquisition of N from soil directly with root when N supply was increased.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA