Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1322008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384434

RESUMO

Different head positions affect the responses of the vestibular semicircular canals (SCCs) to angular movement. Specific head positions can relieve vestibular disorders caused by excessive stimulating SCCs. In this study, we quantitatively explored responses of human SCCs using numerical simulations of fluid-structure interaction and vestibulo-ocular reflex (VOR) experiments under different forward-leaning angles of the head, including 0°, 10°, 20°, 30°, 40°, 50°, and 60°. It was found that the horizontal nystagmus slow-phase velocity and corresponding biomechanical responses of the cupula in horizontal SCC increased with the forward-leaning angles of the head, reached a maximum when the head was tilted 30° forward, and then gradually decreased. However, no obvious vertical or torsional nystagmus was observed in the VOR experiments. In the numerical model of bilateral SCCs, the biomechanical responses of the cupula in the left anterior SCC and the right anterior SCC showed the same trends; they decreased with the forward-leaning angles, reached a minimum at a 40° forward tilt of the head, and then gradually increased. Similarly, the biomechanical responses of the cupula in the left posterior SCC and in the right posterior SCC followed a same trend, decreasing with the forward-leaning angles, reaching a minimum at a 30° forward tilt of the head, and then gradually increasing. Additionally, the biomechanical responses of the cupula in both the anterior and posterior SCCs consistently remained lower than those observed in the horizontal SCCs across all measured head positions. The occurrence of these numerical results was attributed to the consistent maintenance of mutual symmetry in the bilateral SCCs with respect to the mid-sagittal plane containing the axis of rotation. This symmetry affected the distribution of endolymph pressure, resulting in biomechanical responses of the cupula in each pair of symmetrical SCCs exhibiting same tendencies under different forward-leaning angles of the head. These results provided a reliable numerical basis for future research to relieve vestibular diseases induced by spatial orientation of SCCs.

2.
Front Bioeng Biotechnol ; 10: 893337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600894

RESUMO

Background: Femoral neck fracture (FNF) is the most serious bone disease in the elderly population. The multiscale mechanical response is a key to predicting the strength of the femoral neck, assessing the risk of FNF, and exploring the role of mechanosensation and mechanotransmission in bone remodeling, especially in the context of aging bone. Methods: Multiscale finite element (FE) models of the proximal femur for both young and elderly people were developed. The models included organ scale (proximal femur), tissue scale (cortical bone), tissue element scale (osteon), and cell scale [osteocyte lacuna-canalicular network (LCN) and extracellular matrix (ECM), OLCEM]. The mechanical responses of cortical bone and osteocytes in the mid-femoral neck and the differences in mechanical responses between these two scales were investigated. Results: The mechanical responses of cortical bone and osteocyte showed significant differences between the elderly and the young. The minimum principal strains and mean SEDs of cortical bone in the elderly were 2.067-4.708 times and 3.093-14.385 times of the values in the young, respectively; the minimum principal strains and mean SEDs of osteocyte in the elderly were 1.497-3.246 times and 3.044-12 times of the values in the young, respectively; the amplification factors of minimum principal strain in the inferior (Inf), anterior (Ant), and posterior (Post) quadrants in the young were 1.241-1.804 times of the values in the elderly, but the amplification factor of minimum principal strain in the superior (Sup) quadrant was 87.4% of the value in the elderly; the amplification factors of mean SED in the young were 1.124-9.637 times of the values in the elderly. Conclusion: The mass and bone mineral density (BMD) of cortical bone in the femoral neck is closely related to the mechanical response of osteocytes, which provides a new idea for improving cortical bone quality. Perhaps cortical bone quality could be improved by stimulating osteocytes. Quadrantal differences of bone quality in the mid-femoral neck should be considered to improve fracture risk prediction in the future.

3.
Front Bioeng Biotechnol ; 9: 744808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805106

RESUMO

Multiple finite-element (FE) models to predict the biomechanical responses in the human brain resulting from the interaction with blast waves have established the importance of including the brain-surface convolutions, the major cerebral veins, and using non-linear brain-tissue properties to improve model accuracy. We hypothesize that inclusion of a more detailed network of cerebral veins and arteries can further enhance the model-predicted biomechanical responses and help identify correlates of blast-induced brain injury. To more comprehensively capture the biomechanical responses of human brain tissues to blast-wave exposure, we coupled a three-dimensional (3-D) detailed-vasculature human-head FE model, previously validated for blunt impact, with a 3-D shock-tube FE model. Using the coupled model, we computed the biomechanical responses of a human head facing an incoming blast wave for blast overpressures (BOPs) equivalent to 68, 83, and 104 kPa. We validated our FE model, which includes the detailed network of cerebral veins and arteries, the gyri and the sulci, and hyper-viscoelastic brain-tissue properties, by comparing the model-predicted intracranial pressure (ICP) values with previously collected data from shock-tube experiments performed on cadaver heads. In addition, to quantify the influence of including a more comprehensive network of brain vessels, we compared the biomechanical responses of our detailed-vasculature model with those of a reduced-vasculature model and a no-vasculature model for the same blast-loading conditions. For the three BOPs, the predicted ICP values matched well with the experimental results in the frontal lobe, with peak-pressure differences of 4-11% and phase-shift differences of 9-13%. As expected, incorporating the detailed cerebral vasculature did not influence the ICP, however, it redistributed the peak brain-tissue strains by as much as 30% and yielded peak strain differences of up to 7%. When compared to existing reduced-vasculature FE models that only include the major cerebral veins, our high-fidelity model redistributed the brain-tissue strains in most of the brain, highlighting the importance of including a detailed cerebral vessel network in human-head FE models to more comprehensively account for the biomechanical responses induced by blast exposure.

4.
Math Biosci Eng ; 18(4): 4212-4225, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34198433

RESUMO

PURPOSE: To investigate the biomechanical responses of the human cornea after small incision lenticule extraction (SMILE) procedures, especially their effects of SMILE surgery on stress and strain. METHODS: Based on finite element analysis, a three-dimensional (3D) model of the human eye was established to simulate SMILE refractive surgery procedures. Stress and strain values were calculated by inputting the intraocular pressure (IOP). RESULTS: After SMILE refractive surgery procedures, the stress and strain of the anterior and posterior corneal surfaces were significantly increased. The equivalent stress and strain on the anterior and posterior corneal surfaces increased with increasing diopter and were concentrated in the central area, whereas the values of stress and strain at the incision site on the anterior surface of the cornea were approximately 0. Compared with the anterior corneal surface, the stress and strain of the posterior surface were larger. Increasing IOP caused an approximately linear change in stress and a nonlinear increase in corneal strain. In addition, we found that the incision sizes and direction had less of an influence on stress and strain. In summary, SMILE surgery increased the equivalent stress and strain on the human cornea. CONCLUSIONS: The equivalent stress and strain of the anterior and posterior human corneal surfaces increased after SMILE refractive surgery; these increases were particularly noticeable on the posterior surface of the cornea.


Assuntos
Miopia , Procedimentos Cirúrgicos Refrativos , Fenômenos Biomecânicos , Córnea/cirurgia , Análise de Elementos Finitos , Humanos , Miopia/cirurgia , Acuidade Visual
5.
Front Bioeng Biotechnol ; 9: 757755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976963

RESUMO

Despite years of research, it is still unknown whether the interaction of explosion-induced blast waves with the head causes injury to the human brain. One way to fill this gap is to use animal models to establish "scaling laws" that project observed brain injuries in animals to humans. This requires laboratory experiments and high-fidelity mathematical models of the animal head to establish correlates between experimentally observed blast-induced brain injuries and model-predicted biomechanical responses. To this end, we performed laboratory experiments on Göttingen minipigs to develop and validate a three-dimensional (3-D) high-fidelity finite-element (FE) model of the minipig head. First, we performed laboratory experiments on Göttingen minipigs to obtain the geometry of the cerebral vasculature network and to characterize brain-tissue and vasculature material properties in response to high strain rates typical of blast exposures. Next, we used the detailed cerebral vasculature information and species-specific brain tissue and vasculature material properties to develop the 3-D high-fidelity FE model of the minipig head. Then, to validate the model predictions, we performed laboratory shock-tube experiments, where we exposed Göttingen minipigs to a blast overpressure of 210 kPa in a laboratory shock tube and compared brain pressures at two locations. We observed a good agreement between the model-predicted pressures and the experimental measurements, with differences in maximum pressure of less than 6%. Finally, to evaluate the influence of the cerebral vascular network on the biomechanical predictions, we performed simulations where we compared results of FE models with and without the vasculature. As expected, incorporation of the vasculature decreased brain strain but did not affect the predictions of brain pressure. However, we observed that inclusion of the cerebral vasculature in the model changed the strain distribution by as much as 100% in regions near the interface between the vasculature and the brain tissue, suggesting that the vasculature does not merely decrease the strain but causes drastic redistributions. This work will help establish correlates between observed brain injuries and predicted biomechanical responses in minipigs and facilitate the creation of scaling laws to infer potential injuries in the human brain due to exposure to blast waves.

6.
Comput Methods Programs Biomed ; 192: 105441, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32172078

RESUMO

BACKGROUND AND OBJECTIVE: Non-fusion dynamic stabilization surgery is increasingly popular for treating degenerative lumbar disc disease. However, changes in spine biomechanics after application of posterior dynamic fixation devices during whole-body vibration (WBV) remain unclear. The study aimed to examine the effects of non-fusion dynamic stabilization on biomechanical responses of the implanted lumbar spine to vertical WBV. METHODS: By modifying L4-L5 segment of the healthy human L1-sacrum finite element model, single-level disc degeneration, dynamic fixation using the BioFlex system and anterior lumbar interbody fusion (ALIF) with rigid fixation were simulated, respectively. Dynamic responses of stress and strain in the spinal levels for the healthy, degenerated, BioFlex and ALIF models under an axial cyclic loading were investigated and compared. RESULTS: The results showed that endplate stress at implant level was lower in the BioFlex model than in the degenerated and ALIF models, but stress of the connecting rod in the BioFlex system was greater than that in the rigid fixation system used in the ALIF. Compared with the healthy model, stress and strain responses in terms of disc bulge, annulus stress and nucleus pressure at adjacent levels were decreased in the degenerated, BioFlex and ALIF models, but no obvious difference was observed in these responses among the three models. CONCLUSIONS: This study may be helpful to understand variations in vibration characteristics of the lumbar spine after application of non-fusion dynamic stabilization system.


Assuntos
Vértebras Lombares , Fusão Vertebral , Vibração , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Degeneração do Disco Intervertebral/cirurgia , Próteses e Implantes
7.
Biochim Biophys Acta Mol Basis Dis ; 1866(1): 165587, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678158

RESUMO

Mechanisms whereby fibrillin-1 mutations determine thoracic aorta aneurysms/dissections (TAAD) in Marfan Syndrome (MFS) are unclear. Most aortic aneurysms evolve from mechanosignaling deregulation, converging to impaired vascular smooth muscle cell (VSMC) force-generating capacity accompanied by synthetic phenotype switch. However, little is known on VSMC mechanoresponses in MFS pathophysiology. Here, we investigated traction force-generating capacity in aortic VSMC cultured from 3-month old mg∆lpn MFS mice, together with morpho-functional and proteomic data. Cultured MFS-VSMC depicted marked phenotype changes vs. wild-type (WT) VSMC, with overexpressed cell proliferation markers but either lower (calponin-1) or higher (SM alpha-actin and SM22) differentiation marker expression. In parallel, the increased cell area and its complex non-fusiform shape suggested possible transition towards a mesenchymal-like phenotype, confirmed through several markers (e.g. N-cadherin, Slug). MFS-VSMC proteomic profile diverged from that of WT-VSMC particularly regarding lower expression of actin cytoskeleton-regulatory proteins. Accordingly, MFS-VSMC displayed lower traction force-generating capacity and impaired contractile moment at physiological substrate stiffness, and markedly attenuated traction force responses to enhanced substrate rigidity. Such impaired mechanoresponses correlated with decreased number, altered morphology and delocalization of focal adhesions, as well as disorganized actin stress fiber network vs. WT-VSMC. In VSMC cultured from 6-month-old mice, phenotype changes were attenuated and both WT-VSMC and MFS-VSMC generated less traction force, presumably involving VSMC aging, but without evident senescence. In summary, MFS-VSMC display impaired force-generating capacity accompanying a mesenchymal-like phenotype switch connected to impaired cytoskeleton/focal adhesion organization. Thus, MFS-associated TAAD involves mechanoresponse impairment common to other TAAD types, but through distinct mechanisms.


Assuntos
Síndrome de Marfan/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Actinas/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/patologia , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Modelos Animais de Doenças , Feminino , Fibrilina-1/metabolismo , Adesões Focais/metabolismo , Adesões Focais/patologia , Masculino , Síndrome de Marfan/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Proteômica/métodos
8.
Biomed Eng Online ; 18(1): 122, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870380

RESUMO

BACKGROUND: Bone is a hierarchically structured composite material, and different hierarchical levels exhibit diverse material properties and functions. The stress and strain distribution and fluid flow in bone play an important role in the realization of mechanotransduction and bone remodeling. METHODS: To investigate the mechanotransduction and fluid behaviors in loaded bone, a multiscale method was developed. Based on poroelastic theory, we established the theoretical and FE model of a segment bone to provide basis for researching more complex bone model. The COMSOL Multiphysics software was used to establish different scales of bone models, and the properties of mechanical and fluid behaviors in each scale were investigated. RESULTS: FE results correlated very well with analytical in macroscopic scale, and the results for the mesoscopic models were about less than 2% different compared to that in the macro-mesoscale models, verifying the correctness of the modeling. In macro-mesoscale, results demonstrated that variations in fluid pressure (FP), fluid velocity (FV), von Mises stress (VMS), and maximum principal strain (MPS) in the position of endosteum, periosteum, osteon, and interstitial bone and these variations can be considerable (up to 10, 8, 4 and 3.5 times difference in maximum FP, FV, VMS, and MPS between the highest and the lowest regions, respectively). With the changing of Young's modulus (E) in each osteon lamella, the strain and stress concentration occurred in different positions and given rise to microscale spatial variations in the fluid pressure field. The heterogeneous distribution of lacunar-canalicular permeability (klcp) in each osteon lamella had various influence on the FP and FV, but had little effect on VMS and MPS. CONCLUSION: Based on the idealized model presented in this article, the presence of endosteum and periosteum has an important influence on the fluid flow in bone. With the hypothetical parameter values in osteon lamellae, the bone material parameters have effect on the propagation of stress and fluid flow in bone. The model can also incorporate alternative material parameters obtained from different individuals. The suggested method is expected to provide dependable biological information for better understanding the bone mechanotransduction and signal transduction.


Assuntos
Osso e Ossos/fisiologia , Elasticidade , Análise de Elementos Finitos , Fenômenos Biomecânicos , Osso e Ossos/metabolismo , Módulo de Elasticidade , Permeabilidade , Porosidade , Estresse Mecânico , Suporte de Carga
9.
Comput Methods Biomech Biomed Engin ; 22(16): 1294-1302, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31553278

RESUMO

Orthodontic tooth movement is mainly regulated by the biomechanical responses of loaded periodontal ligament (PDL). We investigated the effective intervals of orthodontic force in pure maxillary canine intrusion and extrusion referring to PDL hydrostatic stress and logarithmic strain. Finite element analysis (FEA) models, including a maxillary canine, PDL and alveolar bone, were constructed based on computed tomography (CT) images of a patient. The material properties of alveolar bone were non-uniformly defined using HU values of CT images; PDL was assumed to be a hyperelastic-viscoelastic material. The compressive stress and tensile stress ranging from 0.47 to 12.8 kPa and 18.8 to 51.2 kPa, respectively, were identified as effective for tooth movement; a strain 0.24% was identified as the lower limit of effective strain. The stress/strain distributions within PDL were acquired in canine intrusion and extrusion using FEA; root apex was the main force-bearing area in intrusion-extrusion movements and was more prone to resorption. Owing to the distinction of PDL biomechanical responses to compression and tension, the effective interval of orthodontic force was substantially lower in canine intrusion (80-90 g) than in canine extrusion (230-260 g). A larger magnitude of force remained applicable in canine extrusion. This study revised and complemented orthodontic biomechanical behaviours of tooth movement with intrusive-extrusive force and could further help optimize orthodontic treatment.


Assuntos
Dente Canino/fisiologia , Análise de Elementos Finitos , Maxila/fisiologia , Processo Alveolar/fisiologia , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Pressão Hidrostática , Modelos Biológicos , Ligamento Periodontal/fisiologia , Estresse Mecânico , Técnicas de Movimentação Dentária
10.
J Biomech ; 49(16): 4057-4064, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27825604

RESUMO

We determined the biomechanical responses of chondrocytes to indentation at specific locations within the superficial zone of cartilage (i.e. patellar, femoral groove, femoral condylar and tibial plateau sites) taken from female New Zealand white rabbits three days after a partial meniscectomy in the lateral compartment of a knee joint. Confocal laser scanning microscopy combined with a custom indentation system was utilized to image chondrocyte responses at sites taken from ten contralateral and experimental knee joints. Cell volume, height, width and depth changes, global, local axial and transverse strains and Young׳s moduli were determined. Histological assessment was performed and proteoglycan content from the superficial zone of each site was determined. Relative to contralateral group cells, patellar, femoral groove and lateral femoral condyle cells in the experimental group underwent greater volume decreases (p < 0.05), due to smaller lateral expansions (with greater decreases in cell height only for the lateral femoral condyle cells; p < 0.05) whereas medial femoral and medial tibial plateau cells underwent smaller volume decreases (p < 0.05), due to less deformation in cell height (p < 0.05). Proteoglycan content was reduced in the patellar (p > 0.05), femoral groove, medial femoral condyle and medial tibial plateau experimental sites (p < 0.05). The findings suggest: (i) cell biomechanical responses to cartilage loading in the rabbit knee joint can become altered as early as 3 days after a partial meniscectomy, (ii) are site-specific, and (iii) occur before alterations in tissue mechanics or changes detectable with histology.


Assuntos
Condrócitos/citologia , Articulação do Joelho/citologia , Fenômenos Mecânicos , Menisco/cirurgia , Animais , Tamanho Celular , Condrócitos/metabolismo , Feminino , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiologia , Proteoglicanas/metabolismo , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA