Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.410
Filtrar
1.
Front Plant Sci ; 15: 1434778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962242

RESUMO

Bulk commodity row crop production in the United States is frequently subject to narrow profit margins, often complicated by weather, supply chains, trade, and other factors. Farmers seeking to increase profits and hedge against market volatility often seek to diversify their operations, including producing more lucrative or productive crop varieties. Recombinant plants producing animal or other non-native proteins (commonly referred to as plant molecular farming) present a value-added opportunity for row crop farmers. However, these crops must be produced under robust identity preserved systems to prevent comingling with bulk commodities to maintain the value for farmers, mitigate against market disruptions, and minimize any potential food, feed, or environmental risks.

2.
Braz J Microbiol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954221

RESUMO

Microorganisms are known to be a promising source of biopigments because they are easy to obtain, can be produced on a commercial scale, and are environmentally friendly. Therefore, the aim of this work was to characterize a brown pigment (BP) produced by HM053 in NFbHPN-lactate medium. The BP was extracted from the pellet (BPP) or supernatant (BPS), in the presence (BPPTrp, BPSTrp) or absence (BPPw, BPSw) of tryptophan (Trp). The UV-vis results were similar among all BP samples and compared with commercial melanin used as a standard, and the maximum absorption was observed around 200-220 nm. FTIR spectra showed that BP and commercial melanin had slight differences, with a small band between 3000-2840 cm- 1, related to C-H in the CH2 and CH3 aliphatic groups, which is not observed in the commercial melanin. Between BPP and BPS showed a different structure with bands in the region 1230-1070 cm- 1 related to groups C-O. The thermogravimetric curves for BPSw and BPSTrp showed similar behavior, with 4 stages of mass loss. The similarity between BPPw and BPPTrp with 2 stages of mass loss was also observed. Scanning electron microscopy results showed morphological differences between BPP and BPS, where BPP had a physical structure more homogeneous and a regular flat surface, while the BPS physical structure did not seem homogeneous and the surface was uneven with some spherical structures as commercial melanin.

3.
Trends Plant Sci ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955584

RESUMO

14-3-3 proteins, ubiquitously present in eukaryotic cells, are regulatory proteins involved in a plethora of cellular processes. In plants, they have been studied in the context of metabolism, development, and stress responses. Recent studies have highlighted the pivotal role of 14-3-3 proteins in regulating plant immunity. The ability of 14-3-3 proteins to modulate immune responses is primarily attributed to their function as interaction hubs, mediating protein-protein interactions and thereby regulating the activity and overall function of their binding partners. Here, we shed light on how 14-3-3 proteins contribute to plant defense mechanisms, the implications of their interactions with components of plant immunity cascades, and the potential for leveraging this knowledge for crop improvement strategies.

5.
iScience ; 27(7): 110008, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38989453

RESUMO

Foodborne illness caused by consuming foods contaminated by pathogens remains threating to the public health. Despite considerable efforts of using renewable source materials, it is highly demanding to fabricate food packaging with multiple properties including eco-friendliness, bactericidal effect and biocompatibility. Here, sodium lignosulfonate (SL) and ZnO nanoparticles (ZnO NPs) were used as functional filler and structure components, respectively, on the cellulose nanofibers (CNFs)-based films, which endows the produced membrane (CNF/SL-ZnO) the UV-light blocking, antioxidant, and antimicrobial characteristics. Due to the interconnected polymeric structure, the prepared CNF/SL-ZnO films possessed considerable mechanical properties, thermal stability, and good moisture barrier capability. Moreover, the tested samples exhibited an improved shelf life in food packaging. Furthermore, metagenome analysis revealed superior biodegradability of obtained films with negligible side effect on the soil microenvironment. Therefore, the biocompatible, degradable, and antibacterial CNF/SL-ZnO film holds enormous potential for sustainable uses including food packaging.

6.
iScience ; 27(7): 110194, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38989465

RESUMO

Aiming to shed light on the biology of wild ruminants, we investigated the gut microbiome seasonal dynamics of the Alpine ibex (Capra ibex) from the Central Italian Alps. Feces were collected in spring, summer, and autumn during non-invasive sampling campaigns. Samples were analyzed by 16S rRNA amplicon sequencing, shotgun metagenomics, as well as targeted and untargeted metabolomics. Our findings revealed season-specific compositional and functional profiles of the ibex gut microbiome that may allow the host to adapt to seasonal changes in available forage, by fine-tuning the holobiont catabolic layout to fully exploit the available food. Besides confirming the importance of the host-associated microbiome in providing the phenotypic plasticity needed to buffer dietary changes, we obtained species-level genome bins and identified minimal gut microbiome community modules of 11-14 interacting strains as a possible microbiome-based solution for the bioconversion of lignocellulose to high-value compounds, such as volatile fatty acids.

7.
J Med Internet Res ; 26: e50505, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990611

RESUMO

BACKGROUND: Health care professionals receive little training on the digital technologies that their patients rely on. Consequently, practitioners may face significant barriers when providing care to patients experiencing digitally mediated harms (eg, medical device failures and cybersecurity exploits). Here, we explore the impact of technological failures in clinical terms. OBJECTIVE: Our study explored the key challenges faced by frontline health care workers during digital events, identified gaps in clinical training and guidance, and proposes a set of recommendations for improving digital clinical practice. METHODS: A qualitative study involving a 1-day workshop of 52 participants, internationally attended, with multistakeholder participation. Participants engaged in table-top exercises and group discussions focused on medical scenarios complicated by technology (eg, malfunctioning ventilators and malicious hacks on health care apps). Extensive notes from 5 scribes were retrospectively analyzed and a thematic analysis was performed to extract and synthesize data. RESULTS: Clinicians reported novel forms of harm related to technology (eg, geofencing in domestic violence and errors related to interconnected fetal monitoring systems) and barriers impeding adverse event reporting (eg, time constraints and postmortem device disposal). Challenges to providing effective patient care included a lack of clinical suspicion of device failures, unfamiliarity with equipment, and an absence of digitally tailored clinical protocols. Participants agreed that cyberattacks should be classified as major incidents, with the repurposing of existing crisis resources. Treatment of patients was determined by the role technology played in clinical management, such that those reliant on potentially compromised laboratory or radiological facilities were prioritized. CONCLUSIONS: Here, we have framed digital events through a clinical lens, described in terms of their end-point impact on the patient. In doing so, we have developed a series of recommendations for ensuring responses to digital events are tailored to clinical needs and center patient care.


Assuntos
Segurança Computacional , Humanos , Pessoal de Saúde , Tecnologia Biomédica , Pesquisa Qualitativa , Feminino
9.
iScience ; 27(6): 110062, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947499

RESUMO

As a research infrastructure with a mission to provide services for bioinformatics, ELIXIR aims to identify and inform its target audiences. Here, we present a survey on a community of researchers studying the environment with omics approaches in Greece, one of the youngest member countries of ELIXIR. Personal interviews followed by quantitative and qualitative analysis were employed to document interactions and practices of the community and to perform a gap analysis for the transition toward multiomics and systems biology. Environmental omics in Greece mostly concerns production of data, in large majority on microbes and non-model organisms. Our survey highlighted (1) the popularity and suitability of targeted hands-on training events; (2) data quality and management issues as important elements for the transition to multiomics, and (3) lack of knowledge and misconceptions regarding interoperability, metadata standards, and pre-registration. The publicly available collected answers represent a valuable resource in view of future strategic planning.

10.
iScience ; 27(6): 109998, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947508

RESUMO

Deciphering how different behaviors and ultrasonic vocalizations (USVs) of rats interact can yield insights into the neural basis of social interaction. However, the behavior-vocalization interplay of rats remains elusive because of the challenges of relating the two communication media in complex social contexts. Here, we propose a machine learning-based analysis system (ARBUR) that can cluster without bias both non-step (continuous) and step USVs, hierarchically detect eight types of behavior of two freely behaving rats with high accuracy, and locate the vocal rat in 3-D space. ARBUR reveals that rats communicate via distinct USVs during different behaviors. Moreover, we show that ARBUR can indicate findings that are long neglected by former manual analysis, especially regarding the non-continuous USVs during easy-to-confuse social behaviors. This work could help mechanistically understand the behavior-vocalization interplay of rats and highlights the potential of machine learning algorithms in automatic animal behavioral and acoustic analysis.

11.
Front Bioeng Biotechnol ; 12: 1412927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974658

RESUMO

Introduction: CRISPR gene editing, while highly efficient in creating desired mutations, also has the potential to cause off-target mutations. This risk is especially high in clonally propagated plants, where editing reagents may remain in the genome for long periods of time or in perpetuity. We studied a diverse population of Populus and Eucalyptus trees that had CRISPR/Cas9-containing transgenes that targeted one or two types of floral development genes, homologs of LEAFY and AGAMOUS. Methods: Using a targeted sequence approach, we studied approximately 20,000 genomic sites with degenerate sequence homology of up to five base pairs relative to guide RNA (gRNA) target sites. We analyzed those sites in 96 individual tree samples that represented 37 independent insertion events containing one or multiples of six unique gRNAs. Results: We found low rates of off-target mutations, with rates of 1.2 × 10-9 in poplar and 3.1 × 10-10 in eucalypts, respectively, comparable to that expected due to sexual reproduction. The rates of mutation were highly idiosyncratic among sites and not predicted by sequence similarity to the target sites; a subset of two gRNAs showed off-target editing of four unique genomic sites with up to five mismatches relative to the true target sites, reaching fixation in some gene insertion events and clonal ramets. The location of off-target mutations relative to the PAM site were essentially identical to that seen with on-target CRISPR mutations. Discussion: The low rates observed support many other studies in plants that suggest that the rates of off-target mutagenesis from CRISPR/Cas9 transgenes are negligible; our study extends this conclusion to trees and other long-lived plants where CRISPR/Cas9 transgenes were present in the genome for approximately four years.

12.
aBIOTECH ; 5(2): 209-213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974868

RESUMO

Current systems to screen for transgenic soybeans (Glycine max) involve laborious molecular assays or the expression of fluorescent markers that are difficult to see in soybean plants. Therefore, a visual system for early screening of transgenic plants would increase the efficiency of crop improvement by genome editing. The RUBY reporter system, which consists of three genes encoding betalain biosynthetic enzymes, leading to the accumulation of purple pigment in transgenic tissue, has been employed in some plants and dikaryon fungi. Here, we assessed the RUBY reporter for visual verification during soybean transformation. We show that RUBY can be expressed in soybean, allowing for visual confirmation of transgenic events without the need for specialized equipment. Plants with visible accumulation of purple pigment in any tissue were successfully transformed, confirming the accuracy of the RUBY system as a visual indicator. We also assessed the genetic stability of the transgene across generations, which can be performed very early, using the cotyledons of the progeny. Transgene-free seedlings have a distinct green color, facilitating the selection of genome-edited but transgene-free soybean seedlings for harvest. Using the RUBY system, we quickly identified a transgene-free Gmwaxy mutant in the T1 generation. This system thus provides an efficient and convenient tool for soybean genome editing.

13.
Heliyon ; 10(12): e32546, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975228

RESUMO

Understanding the molecular and physical complexity of the tissue microenvironment (TiME) in the context of its spatiotemporal organization has remained an enduring challenge. Recent advances in engineering and data science are now promising the ability to study the structure, functions, and dynamics of the TiME in unprecedented detail; however, many advances still occur in silos that rarely integrate information to study the TiME in its full detail. This review provides an integrative overview of the engineering principles underlying chemical, optical, electrical, mechanical, and computational science to probe, sense, model, and fabricate the TiME. In individual sections, we first summarize the underlying principles, capabilities, and scope of emerging technologies, the breakthrough discoveries enabled by each technology and recent, promising innovations. We provide perspectives on the potential of these advances in answering critical questions about the TiME and its role in various disease and developmental processes. Finally, we present an integrative view that appreciates the major scientific and educational aspects in the study of the TiME.

15.
Phytopathology ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970807

RESUMO

Wheat powdery mildew (WPM) is one of the most devasting diseases that affects wheat yield worldwide. Few efforts have been done to control such a serious disease. Looking for an effective way to control WPM is urgently needed. Biological control is an effective way in controlling plant diseases worldwide. In this study, the efficiency of three different Trichoderma spp. in controlling WPM at seedling growth stage was tested using 35 highly diverse wheat genotypes. Highly significant differences were found in WPM resistance among the four treatments confirming the efficiency of Trichoderma in controlling WPM. Out of the three species, Trichoderma asperellum T34 (T34) was the most effective species in controlling WPM as it reduced the symptoms with a percentage of 50.56%. A set of 196 wheat genotypes was used to identify the genetic control of the WPM induced resistance by T34. A total of 39, 27, and 18 gene models were identified to contain the significant markers under Pm, T34, and the improvement in powdery mildew resistance due to T34 (T34_improvement) conditions. Furthermore, no gene model was common between T34 and Pm suggesting the presence of completely different genetic systems controlling the resistance under T34 and Pm. The functional annotation and biological process pathways of the detected gene models confirm their association with the normal and induced resistance. This study, for the first time, confirm the efficiency of T34 in controlling WPM and provide a deep understanding of the genetic control of induced and normal resistance to WPM.

16.
Phytopathology ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970808

RESUMO

Powdery scab is an important potato disease caused by the soilborne pathogen Spongospora subterranea f. sp. subterranea. Currently, reliable chemical control and resistant cultivars for powdery scab are unavailable. As an alternative control strategy, we propose a novel approach involving the effective delivery of a phytocytokine to plant roots by the rhizobacterium Bacillus subtilis. The modified strain is designed to secrete the plant elicitor peptide StPep1. In our experiments employing a hairy root system, we observed a significant reduction in powdery scab pathogen infection when directly applying the StPep1 peptide. Furthermore, our pot assay, which involved pretreating potato roots with StPep1-secreting B. subtilis, demonstrated a substantial decrease in disease symptoms, including reduced root galling and fewer tuber skin scabs. These findings underscore the potential of engineered bacteria as a promising strategy for safeguarding plants against powdery scab.

17.
Methods Mol Biol ; 2827: 145-153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985267

RESUMO

Plant cell suspension cultures (PCSCs) are in vitro-cultured cells that can divide indefinitely in a sterile growth medium. These PCSCs can be derived from various plant tissues, such as the root, stem, leaves, or seeds, and are maintained in a suitable culture medium containing nutrients, vitamins, hormones, and other essential components necessary for their growth. PCSCs have extensive applications in biotechnology, particularly in producing pharmaceutical and chemical compounds. This chapter presents a protocol for generating cell lines from Arabidopsis thaliana root callus under different light conditions, which can be used to investigate the effects of light on plant cell growth and development. The protocol described in this chapter is a valuable tool for researchers interested in utilizing PCSCs in their studies.


Assuntos
Arabidopsis , Técnicas de Cultura de Células , Luz , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Meios de Cultura/química , Células Cultivadas
18.
Methods Mol Biol ; 2827: 377-383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985283

RESUMO

Chloroplast isolation protocols have been extensively developed for various species of plants, particularly model organisms with easily manipulable physical characteristics. However, succulent plants, such as Agave angustifolia Haw., which possess adaptations for arid environments like the Crassulacean acid metabolism (CAM) and a thicker cuticle, have received less attention, resulting in a potential knowledge gap. This chapter presents a specialized protocol focusing on isolating chloroplast from A. angustifolia, a species exhibiting adaptations to arid conditions and holding ecological and economic significance due to its role in producing bacanora and mezcal beverages. By successfully isolating chloroplast from A. angustifolia plant growth in ex vitro and in vitro conditions, this protocol enables comprehensive future analyses to elucidate metabolic processes and explore potential applications in related species. Consequently, this research aims to bridge this knowledge gap in chloroplast isolation for succulent plants, providing new insights for future investigations in the field.


Assuntos
Agave , Cloroplastos , Cloroplastos/metabolismo , Fracionamento Celular/métodos
19.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000524

RESUMO

Marine sponges represent a good source of natural metabolites for biotechnological applications in the pharmacological, cosmeceutical, and nutraceutical fields. In the present work, we analyzed the biotechnological potential of the alien species Haliclona (Halichoclona) vansoesti de Weerdt, de Kluijver & Gomez, 1999, previously collected in the Mediterranean Sea (Faro Lake, Sicily). The bioactivity and chemical content of this species has never been investigated, and information in the literature on its Caribbean counterpart is scarce. We show that an enriched extract of H. vansoesti induced cell death in human melanoma cells with an IC50 value of 36.36 µg mL-1, by (i) triggering a pro-inflammatory response, (ii) activating extrinsic apoptosis mediated by tumor necrosis factor receptors triggering the mitochondrial apoptosis via the involvement of Bcl-2 proteins and caspase 9, and (iii) inducing a significant reduction in several proteins promoting human angiogenesis. Through orthogonal SPE fractionations, we identified two active sphingoid-based lipid classes, also characterized by nuclear magnetic resonance and mass spectrometry, as the main components of two active fractions. Overall, our findings provide the first evaluation of the anti-cancer potential of polar lipids isolated from the marine sponge H. (Halichoclona) vansoesti, which may lead to new lead compounds with biotechnological applications in the pharmaceutical field.


Assuntos
Antineoplásicos , Apoptose , Haliclona , Lipídeos , Melanoma , Animais , Haliclona/química , Humanos , Melanoma/patologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Poríferos/química
20.
STAR Protoc ; 5(3): 103186, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003746

RESUMO

Osteocytes are the main mechanosensory cells and the primary regulators of bone metabolic homeostasis. Here, we present a protocol for evaluating the effects of the large gradient high magnetic field (LG-HMF) on osteocyte function. We describe steps for establishing a corresponding cell culture system in the LG-HMF generated by a superconducting magnet. We then detail procedures for using this cell culture system to study the effects of magnetic forces on the structure and function of murine long bone osteocyte Y4 cells. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA