RESUMO
Rationale: Chemoresistance is a key factor contributing to the failure of anti-breast cancer chemotherapy. Although abnormal glycosylation is closely correlated with breast cancer progression, the function of glycoconjugates in chemoresistance remains poorly understood. Methods: Levels and regulatory roles of bisecting N-acetylglucosamine (GlcNAc) in chemoresistant breast cancer cells were determined in vitro and in vivo. Glycoproteomics guided identification of site-specific bisecting GlcNAc on P-glycoprotein (P-gp). Co-immunoprecipitation coupled mass spectrometry (Co-IP-MS) and proximity labelling MS identified the interactome of P-gp, and the biological function of site-specific bisecting GlcNAc was investigated by site/truncation mutation and structural simulations. Results: Bisecting GlcNAc levels were reduced in chemoresistant breast cancer cells, accompanied by an enhanced expression of P-gp. Enhanced bisecting GlcNAc effectively reversed chemoresistance. Mechanical study revealed that bisecting GlcNAc impaired the association between Ezrin and P-gp, leading to a decreased expression of membrane P-gp. Bisecting GlcNAc suppressed VPS4A-mediated P-gp recruitment into microvesicles, and chemoresistance transmission. Structural dynamics analysis suggested that bisecting GlcNAc at Asn494 introduced structural constraints that rigidified the conformation and suppressed the activity of P-gp. Conclusion: Our findings highlight the crucial role of bisecting GlcNAc in chemoresistance and suggest the possibility of reversing chemoresistance by modulating the specific glycosylation in breast cancer therapy.
Assuntos
Acetilglucosamina , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Acetilglucosamina/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Linhagem Celular Tumoral , Glicosilação/efeitos dos fármacos , Camundongos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Camundongos Nus , Proteínas do CitoesqueletoRESUMO
BACKGROUND: N-Acetylglucosaminyltransferase-III (GnT-III, also designated MGAT3) catalyzes the formation of a specific N-glycan branch, bisecting GlcNAc, in the Golgi apparatus. Bisecting GlcNAc is a key residue that suppresses N-glycan maturation and is associated with the pathogenesis of cancer and Alzheimer's disease. However, it remains unclear how GnT-III recognizes its substrates and how GnT-III activity is regulated in cells. METHODS: Using AlphaFold2 and structural comparisons, we predicted the key amino acid residues in GnT-III that interact with substrates in the catalytic pocket. We also performed in vitro activity assay, lectin blotting analysis and N-glycomic analysis using point mutants to assess their activity. RESULTS: Our data suggested that E320 of human GnT-III is the catalytic center. More interestingly, we found a unique mutant, K346T, that exhibited lower in vitro activity and higher intracellular activity than wild-type GnT-III. The enzyme assays using various substrates showed that the substrate specificity of K346T was unchanged, whereas cycloheximide chase experiments revealed that the K346T mutant has a slightly shorter half-life, suggesting that the mutant is unstable possibly due to a partial misfolding. Furthermore, TurboID-based proximity labeling showed that the localization of the K346T mutant is shifted slightly to the cis side of the Golgi, probably allowing for prior action to competing galactosyltransferases. CONCLUSIONS: The slight difference in K346T localization may be responsible for the higher biosynthetic activity despite the reduced activity. GENERAL SIGNIFICANCE: Our findings underscore the importance of fine intra-Golgi localization and reaction orders of glycosyltransferases for the biosynthesis of complex glycan structures in cells.
Assuntos
Complexo de Golgi , N-Acetilglucosaminiltransferases , Humanos , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Especificidade por Substrato , Complexo de Golgi/metabolismo , Complexo de Golgi/genética , Mutação , Polissacarídeos/metabolismo , Domínio Catalítico , GlicosilaçãoRESUMO
The functions of macrophages are governed by distinct polarization phenotypes, which can be categorized as either anti-tumor/M1 type or pro-tumor/M2 type. Glycosylation is known to play a crucial role in various cellular processes, but its influence on macrophage polarization is not well-studied. In this study, we observed a significant decrease in bisecting GlcNAc during M0-M1 polarization, and impaired bisecting GlcNAc was found to drive M0-M1 polarization. Using a glycoproteomics strategy, we identified Lgals3bp as a specific glycoprotein carrying bisecting GlcNAc. A high level of bisecting GlcNAc modification facilitated the degradation of Lgals3bp, while a low level of bisecting GlcNAc stabilized Lgals3bp. Elevated levels of Lgals3bp promoted M1 polarization through the activation of the NF-кB pathway. Conversely, the activated NF-кB pathway significantly repressed the transcription of MGAT3, leading to reduced levels of bisecting GlcNAc modification on Lgals3bp. Overall, our study highlights the impact of glycosylation on macrophage polarization and suggests the potential of engineered macrophages via glycosylated modification. Video Abstract.
Assuntos
Macrófagos , NF-kappa B , GlicosilaçãoRESUMO
Drug resistance is a major obstacle to successful cancer treatment. Therefore, it is essential to understand the molecular mechanisms underlying drug resistance to develop successful therapeutic strategies. α6ß4 integrin confers resistance to apoptosis and regulates the survival of cancer cells; however, it remains unclear whether α6ß4 integrin is directly involved in chemoresistance. Here, we show that α6ß4 integrin promotes doxorubicin resistance by decreasing caspase-3-mediated apoptosis. We found that the overexpression of α6ß4 integrin by the ß4 integrin gene rendered MDA-MB435S and Panc-1 cells more resistant to doxorubicin than control cells. The acquired resistance to doxorubicin by α6ß4 integrin expression was abolished by the deletion of the cytoplasmic signal domain in ß4 integrin. Similar results were found in MDA-MB435S and Panc-1 cells when N-glycan-defective ß4 integrin mutants were overexpressed or bisecting GlcNAc residues were increased on ß4 integrin by the co-expression of N-acetylglucosaminyltransferase III with ß4 integrin. The abrogation of α6ß4 integrin-mediated resistance to doxorubicin was accompanied by reduced cell viability and an increased caspase-3 activation. Taken together, our results clearly suggest that α6ß4 integrin signaling plays a key role in the doxorubicin resistance of cancer cells, and N-glycans on ß4 integrin are involved in the regulation of cancer cells.
Assuntos
Integrina alfa6beta4 , Neoplasias , Integrina alfa6beta4/genética , Integrina alfa6beta4/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Integrina beta4/genética , Transdução de Sinais , Apoptose/fisiologiaRESUMO
The phenomenon of multidrug resistance (MDR) is called chemoresistance with respect to the treatment of cancer, and it continues to be a major challenge. The role of N-glycosylation in chemoresistance, however, remains poorly understood. Here, we established a traditional model for adriamycin resistance in K562 cells, which are also known as K562/adriamycin-resistant (ADR) cells. Lectin blot, mass spectrometry, and RT-PCR analysis showed that the expression levels of N-acetylglucosaminyltransferase III (GnT-III) mRNA and its products, bisected N-glycans, are significantly decreased in K562/ADR cells, compared with the levels in parent K562 cells. By contrast, the expression levels of both P-glycoprotein (P-gp) and its intracellular key regulator, NF-κB signaling, are significantly increased in K562/ADR cells. These upregulations were sufficiently suppressed by the overexpression of GnT-III in K562/ADR cells. We found that the expression of GnT-III consistently decreased chemoresistance for doxorubicin and dasatinib, as well as activation of the NF-κB pathway by tumor necrosis factor (TNF) α, which binds to two structurally distinct glycoproteins, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), on the cell surface. Interestingly, our immunoprecipitation analysis revealed that only TNFR2, but not TNFR1, contains bisected N-glycans. The lack of GnT-III strongly induced TNFR2's autotrimerization without ligand stimulation, which was rescued by the overexpression of GnT-III in K562/ADR cells. Furthermore, the deficiency of TNFR2 suppressed P-gp expression while it increased GnT-III expression. Taken together, these results clearly show that GnT-III negatively regulates chemoresistance via the suppression of P-gp expression, which is regulated by the TNFR2-NF/κB signaling pathway.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , NF-kappa B , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptores Tipo II do Fator de Necrose Tumoral/genética , Transdução de Sinais , Doxorrubicina/farmacologia , Polissacarídeos/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismoRESUMO
Intrahepatic cholangiocarcinoma (ICC) is the second major subtype of primary liver cancer and has caused more and more attention with increasing incidence and mortality worldwide. Our previous study found that bisecting N-glycans are commonly increased in ICC, while the effects and potential functions of bisecting GlcNAc in ICC are still largely unclear. In this study, we further confirmed that the structures of bisecting GlcNAc were significantly up-regulated in ICC compared with paracancer tissues by glycoproteomic data and lectin histochemistry. The expression of its glycosyltransferase MGAT3 was also up-regulated in ICC tissues at both mRNA and protein levels, and expression of MGAT3 is negatively correlated with overall survival explored by bioinformatic analyses and published datasets from 255 patients. Next, the silencing of MGAT3 could inhibit the growth and invasion of ICC cells, and overexpressing of MGAT3 only promoted ICC cell invasion. Further glycoproteomic analysis showed that the commonly glycoproteins modified by bisecting GlcNAc after MGAT3-overexpression in two ICC cell lines were mainly involved in cell movement-related biological processes, such as cell adhesion, integrin-related and ECM-receptor interaction. This study sheds light on the potential effects of bisecting GlcNAc in ICC cells and suggests that MGAT3 might be used as a potential target in the therapy of ICC.
Assuntos
Acetilglucosamina , N-Acetilglucosaminiltransferases , Humanos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismo , Polissacarídeos/química , Glicoproteínas/genética , Glicoproteínas/química , Linhagem Celular , Linhagem Celular TumoralRESUMO
Pancreatic cancer (PC) remains one of the top 10 causes of cancer-related death in recent years. Approximately 80% of PC patients are diagnosed at the middle or advanced stage and miss the opportunity for surgery. The demand for early diagnostic methods and reliable biomarkers is increasing, although a number of tumor markers such as CA19-9 and CEA have already been utilized in clinics. In this study, we analyzed the alteration of N-glycan of serum glycoproteins by mass spectrometry and lectin blotting. The results showed that bisecting GlcNAc structures of glycoproteins are significantly increased in PC patients' sera. With Phaseolus vulgaris Erythroagglutinin (PHA-E) lectin that specifically recognizes bisecting GlcNAc N-glycans, the serum glycoproteins bearing bisecting GlcNAc in PC patients' sera were pulled down and identified by nano-LC-MS/MS. Among them, ceruloplasmin (Cp) was screened out with a satisfied sensitivity and specificity in identifying PC from acute pancreatitis patients (AUC: 0.757) and normal healthy persons (AUC: 0.972), suggesting a close association between Cp and PC development and diagnosis. To prove that, the Cp expression in tumor tissues of PC patients was examined. The results showed that Cp was significantly upregulated in PC tissues compared to that in adjacent normal tissues. All these results suggested that PHA-E-positive Cp could be a potential PC-specific glycoprotein marker to distinguish PC patients from acute pancreatitis patients and normal persons.
Assuntos
Neoplasias Pancreáticas , Pancreatite , Phaseolus , Doença Aguda , Antígeno CA-19-9 , Ceruloplasmina/metabolismo , Glicoproteínas/metabolismo , Humanos , Lectinas/metabolismo , Neoplasias Pancreáticas/diagnóstico , Phaseolus/metabolismo , Fito-Hemaglutininas , Polissacarídeos/metabolismo , Espectrometria de Massas em Tandem , Neoplasias PancreáticasRESUMO
BACKGROUND: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes a respiratory illness named coronavirus disease 2019 (COVID-19), which is one of the main global health problems since 2019. Glycans attached to the Fc portion of immunoglobulin G (IgG) are important modulators of IgG effector functions. Fc region binds to different receptors on the surface of various immune cells, dictating the type of immune response. Here, we performed a large longitudinal study to determine whether the severity and duration of COVID-19 are associated with altered IgG glycosylation. METHODS: Using ultra-high-performance liquid chromatography analysis of released glycans, we analysed the composition of the total IgG N-glycome longitudinally during COVID-19 from four independent cohorts. We analysed 77 severe COVID-19 cases from the HR1 cohort (74% males, median age 72, age IQR 25-80); 31 severe cases in the HR2 cohort (77% males, median age 64, age IQR 41-86), 18 mild COVID-19 cases from the UK cohort (17% males, median age 50, age IQR 26-71) and 28 mild cases from the BiH cohort (71% males, median age 60, age IQR 12-78). FINDINGS: Multiple statistically significant changes in IgG glycome composition were observed during severe COVID-19. The most statistically significant changes included increased agalactosylation of IgG (meta-analysis 95% CI [0.03, 0.07], adjusted meta-analysis P= <0.0001), which regulates proinflammatory actions of IgG via complement system activation and indirectly as a lack of sialylation and decreased presence of bisecting N-acetylglucosamine on IgG (meta-analysis 95% CI [-0.11, -0.08], adjusted meta-analysis P= <0.0001), which indirectly affects antibody-dependent cell-mediated cytotoxicity. On the contrary, no statistically significant changes in IgG glycome composition were observed in patients with mild COVID-19. INTERPRETATION: The IgG glycome in severe COVID-19 patients is statistically significantly altered in a way that it indicates decreased immunosuppressive action of circulating immunoglobulins. The magnitude of observed changes is associated with the severity of the disease, indicating that aberrant IgG glycome composition or changes in IgG glycosylation may be an important molecular mechanism in COVID-19. FUNDING: This work has been supported in part by Croatian Science Foundation under the project IP-CORONA-2020-04-2052 and Croatian National Centre of Competence in Molecular Diagnostics (The European Structural and Investment Funds grant #KK.01.2.2.03.0006), by the UKRI/MRC (Cov-0331 - MR/V027883/1) and by the National Institutes for Health Research Nottingham Biomedical Research Centre and by Ministry Of Science, Higher Education and Youth Of Canton Sarajevo, grant number 27-02-11-4375-10/21.
Assuntos
COVID-19 , Imunoglobulina G , Adolescente , Idoso , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Observacionais como Assunto , Polissacarídeos/metabolismo , SARS-CoV-2RESUMO
Human natural killer-1 (HNK-1) is a sulfated glyco-epitope regulating cell adhesion and synaptic functions. HNK-1 and its non-sulfated forms, which are specifically expressed in the brain and the kidney, respectively, are distinctly biosynthesized by two homologous glycosyltransferases: GlcAT-P in the brain and GlcAT-S in the kidney. However, it is largely unclear how the activity of these isozymes is regulated in vivo. We recently found that bisecting GlcNAc, a branching sugar in N-glycan, suppresses both GlcAT-P activity and HNK-1 expression in the brain. Here, we observed that the expression of non-sulfated HNK-1 in the kidney is unexpectedly unaltered in mutant mice lacking bisecting GlcNAc. This suggests that the biosynthesis of HNK-1 in the brain and the kidney are differentially regulated by bisecting GlcNAc. Mechanistically, in vitro activity assays demonstrated that bisecting GlcNAc inhibits the activity of GlcAT-P but not that of GlcAT-S. Furthermore, molecular dynamics simulation showed that GlcAT-P binds poorly to bisected N-glycan substrates, whereas GlcAT-S binds similarly to bisected and non-bisected N-glycans. These findings revealed the difference of the highly homologous isozymes for HNK-1 synthesis, highlighting the novel mechanism of the tissue-specific regulation of HNK-1 synthesis by bisecting GlcNAc.
Assuntos
Antígenos CD57/biossíntese , Glucuronosiltransferase/metabolismo , Animais , Encéfalo/metabolismo , Células COS , Linhagem Celular , Chlorocebus aethiops , Epitopos/metabolismo , Glicosiltransferases/metabolismo , Células HEK293 , Humanos , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Polissacarídeos/metabolismoRESUMO
N-glycosylation is essential for many biological processes in mammals. A variety of N-glycan structures exist, of which, the formation of bisecting N-acetylglucosamine (GlcNAc) is catalyzed by N-acetylglucosaminyltransferase-III (GnT-III, encoded by the Mgat3 gene). We previously identified various bisecting GlcNAc-modified proteins involved in Alzheimer's disease and cancer. However, the mechanisms by which GnT-III acts on the target proteins are unknown. Here, we performed comparative glycoproteomic analyses using brain membranes of wild type (WT) and Mgat3-deficient mice. Target glycoproteins of GnT-III were enriched with E4-phytohemagglutinin (PHA) lectin, which recognizes bisecting GlcNAc, and analyzed by liquid chromatograph-mass spectrometry. We identified 32 N-glycosylation sites (Asn-Xaa-Ser/Thr, Xaa ≠ Pro) that were modified with bisecting GlcNAc. Sequence alignment of identified N-glycosylation sites that displayed bisecting GlcNAc suggested that GnT-III does not recognize a specific primary amino acid sequence. The molecular modeling of GluA1 as one of the good cell surface substrates for GnT-III in the brain, indicated that GnT-III acts on N-glycosylation sites located in a highly flexible and mobile loop of GluA1. These results suggest that the action of GnT-III is partially affected by the tertiary structure of target proteins, which can accommodate bisecting GlcNAc that generates a bulky flipped-back conformation of the modified glycans.
Assuntos
Acetilglucosamina/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Peptídeos/metabolismo , Receptores de AMPA/metabolismo , Análise de Sequência de Proteína , Acetilglucosamina/genética , Animais , Membrana Celular/genética , Glicosilação , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/deficiência , N-Acetilglucosaminiltransferases/metabolismo , Mapeamento de Peptídeos , Peptídeos/genética , Receptores de AMPA/genéticaRESUMO
Mesothelioma is a highly aggressive tumour associated with asbestos exposure and is histologically classified into three types: epithelioid-type, sarcomatoid-type and biphasic-type. The prognosis of mesothelioma patients is poor and there is no effective molecular-targeting therapy as yet. ERC/mesothelin is a glycoprotein that is highly expressed on several types of cancers including epithelioid mesothelioma, but also expressed on normal mesothelial cells. This is a predicted reason why there is no clinically approved therapeutic antibody targeting ERC/mesothelin. In the present study, we focussed on the differential glycosylation between ERC/mesothelin present on epithelioid mesothelioma and that on normal mesothelial cells and aimed to reveal a distinct feature of epithelioid mesothelioma cells. Lectin microarray analysis of ERC/mesothelin using cells and patient specimens showed significantly stronger binding of PHA-E4 lectin, which recognizes complex-type N-glycans having a so-called bisecting-GlcNAc structure, to ERC/mesothelin from epithelioid mesothelioma cells than that from normal mesothelial cells. Further, liquid chromatography/mass spectrometry analysis on ERC/mesothelin from epithelioid mesothelioma cells confirmed the presence of a bisecting-GlcNAc attached to Asn388 of ERC/mesothelin. These results suggest that this glycoproteome could serve as a potential target for the generation of a highly selective and safe therapeutic antibody for epithelioid mesothelioma.
Assuntos
Acetilglucosamina/metabolismo , Proteínas Ligadas por GPI/metabolismo , Lectinas/metabolismo , Mesotelioma/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Células Epitelioides/metabolismo , Glicosilação , Humanos , Espectrometria de Massas/métodos , Mesotelina , Mesotelioma Maligno/metabolismo , Análise Serial de Proteínas/métodosRESUMO
Human adipose tissue contains a major source of adipose-derived stem cells (ADSCs) that have the ability to differentiate into various cell types: in vitro, ADSCs can differentiate into mesenchymal lineages including adipocytes, while in vivo, ADSCs become mature adipocytes. Protein glycosylation has been shown to change in stem cell differentiation, and while ADSCs have been acknowledged for their therapeutic potential, little is known about protein glycosylation during human ADSC adipogenic differentiation. In the present study, the global membrane protein glycosylation of native adipocytes was compared to ADSCs from the same individuals as a model of in vivo adipogenesis. For in vitro adipogenesis, ADSCs were adipogenically differentiated in cell culture using an optimized, large-scale differentiation procedure. The membrane glycome of the differentiated ADSCs (dADSCs) was compared with mature adipocytes and the progenitor ADSCs. A total of 137 glycan structures were characterized across the three cell types using PGC-LC coupled with negative-ion electrospray ionization mass spectrometry (ESI-MS)/MS. Significantly higher levels of bisecting GlcNAc-type N-glycans were detected in mature adipocytes (32.1% of total glycans) and in in vitro dADSC progeny (1.9% of total glycans) compared to ADSCs. This was further correlated by the mRNA expression of the MGAT3 gene responsible for the enzymatic synthesis of this structural type. The bisecting GlcNAc structures were found on the majority of human native adipocyte membrane proteins, suggesting an important role in human adipocyte biology. Core fucosylation was also significantly increased during in vivo adipogenesis but did not correlate with an increase in Fut8 gene transcript. Unexpectedly, low abundance structures carrying rare ß-linked Gal-Gal termini were also detected. Overall, the N-glycan profiles of the in vitro differentiated progeny did not reflect native adipocytes, and the results show that bisecting GlcNAc structures are a characteristic feature of human adipocyte membrane protein N-glycosylation. Raw MS files are available on GlycoPOST (ID: GPST000153 https://glycopost.glycosmos.org/).
Assuntos
Adipócitos , Adipogenia , Tecido Adiposo , Diferenciação Celular , Glicosilação , Humanos , PolissacarídeosRESUMO
A large variation in the severity of disease symptoms is one of the key open questions in coronavirus disease 2019 (COVID-19) pandemics. The fact that only a small subset of people infected with severe acute respiratory syndrome coronavirus 2 develops severe disease suggests that there have to be some predisposing factors, but biomarkers that reliably predict disease severity have not been found so far. Since overactivation of the immune system is implicated in a severe form of COVID-19 and the immunoglobulin G (IgG) glycosylation is known to be involved in the regulation of different immune processes, we evaluated the association of interindividual variation in IgG N-glycome composition with the severity of COVID-19. The analysis of 166 severe and 167 mild cases from hospitals in Spain, Italy and Portugal revealed statistically significant differences in the composition of the IgG N-glycome. The most notable difference was the decrease in bisecting N-acetylglucosamine in severe patients from all three cohorts. IgG galactosylation was also lower in severe cases in all cohorts, but the difference in galactosylation was not statistically significant after correction for multiple testing.
Assuntos
COVID-19/epidemiologia , COVID-19/patologia , Imunoglobulina G/metabolismo , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Adulto , Idoso , COVID-19/metabolismo , COVID-19/virologia , Estudos de Coortes , Feminino , Glicosilação , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Portugal/epidemiologia , Espanha/epidemiologiaRESUMO
Small extracellular vesicles (sEVs) are enriched in glycoconjugates and display specific glycosignatures. Aberrant expression of surface glycoconjugates is closely correlated with cancer progression and metastasis. The essential functions of glycoconjugates in sEVs are poorly understood. In this study, we observed significantly reduced levels of bisecting GlcNAc in breast cancer. Introduction of bisecting GlcNAc into breast cancer cells altered the bisecting GlcNAc status on sEVs, and sEVs with diverse bisecting GlcNAc showed differing functions on recipient cells. Carcinogenesis and metastasis of recipient cells were enhanced by sEVs with low bisecting GlcNAc, and the pro-metastatic functions of sEVs was diminished by high bisecting GlcNAc modification. We further identified vesicular integrin ß1 as a target protein bearing bisecting GlcNAc. Metastasis of recipient cells was strongly suppressed by high bisecting GlcNAc levels on vesicular ß1. Our findings demonstrate the important roles of glycoconjugates on sEVs. Modification of sEV glycosylation may contribute to development of novel targets in breast cancer therapy.
Assuntos
Acetilglucosamina/metabolismo , Neoplasias da Mama/metabolismo , Vesículas Extracelulares/metabolismo , Integrina beta1/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Vesículas Extracelulares/patologia , Feminino , Glicosilação , Humanos , Metástase NeoplásicaRESUMO
The N-glycans of mammalian glycoproteins vary greatly in structure, and the biological importance of these variations is mostly unknown. It is widely acknowledged that the bisecting N-acetylglucosamine (GlcNAc) structure, a ß1,4-linked GlcNAc attached to the core ß-mannose residue, represents a special type of N-glycosylated modification, and it has been reported to be involved in various biological processes, such as cell adhesion, fertilization and fetal development, neuritogenesis, and tumor development. In particular, the occurrence of N-glycans with a bisecting GlcNAc modification on proteins has been proven, with many implications for immune biology. Due to the essential functions of bisecting GlcNAc structures, analytical approaches to this modification are highly required. The traditional approach that has been used for bisecting GlcNAc determinations is based on the lectin recognition of Phaseolus vulgaris erythroagglutinin (PHA-E); however, poor binding specificity hinders the application of this method. With the development of mass spectrometry (MS) with high resolution and improved sensitivity and accuracy, MS-based glycomic analysis has provided precise characterization and quantification for glycosylation modification. In this review, we first provide an overview of the bisecting GlcNAc structure and its biological importance in neurological systems, immune tolerance, immunoglobulin G (IgG), and tumor metastasis and development and then summarize approaches to its determination by MS for performing precise functional studies. This review is valuable for those readers who are interested in the importance of bisecting GlcNAc in cell biology.
RESUMO
Glycosylation, the most prevalent and diverse post-translational modification of protein, plays crucial biological roles in many physiological and pathological events. Alteration of N-glycan has been detected during breast cancer progression. Among the specific N-glycan structures, bisecting N-Acetylglucosamine (GlcNAc) is a ß1,4-linked GlcNAc attached to the core ß-mannose residue, and is catalyzed by glycosyltransferase MGAT3. Bisecting GlcNAc levels were commonly dysregulated in different types of cancer. In this study, we utilized mass spectrometry and lectin microarray analysis to investigate aberrant N-glycans in breast cancer cells. Our data showed the decreased levels of bisecting GlcNAc and down-regulated expression of MGAT3 in breast cancer cells than normal epithelial cells. Using PHA-E (a plant lectin recognizing and combining bisecting GlcNAc) based enrichment coupled with nanoLC-MS/MS, we analyzed the glycoproteins bearing bisecting GlcNAc in various breast cancer cells. Among the differentially expressed glycoproteins, levels of bisecting GlcNAc on EGFR were significantly decreased in breast cancer cells, confirmed by immunostaining and immunoprecipitation. We overexpressed MGAT3 in breast cancer MDA-MB-231 cells, and overexpression of MGAT3 significantly enhanced the bisecting N-GlcNAc on EGFR and suppressed the EGFR/Erk signaling, which further resulted in the reduction of migratory ability, cell proliferation, and clonal formation. Taken together, we conclude that bisecting N-GlcNAc on EGFR inhibits malignant phenotype of breast cancer via down-regulation of EGFR/Erk signaling.
RESUMO
Plant-based expression system has many potential advantages to produce biopharmaceuticals, but plants cannot be directly used to express human glycoproteins because of their differences in glycosylation abilities from mammals. To exploit plant-based expression system for producing recombinant human erythropoietin (rhuEPO), we glycoengineered tobacco plants by stably introducing seven to eight mammalian genes including a target human EPO into tobacco in order to generate capacities for ß1,4-galactosylation, bisecting N-acetylglucosamine (GlcNAc) and sialylation. Wild type human ß1,4-galactosyltransferase gene (GalT) or a chimeric GalT gene (ST/GalT) was co-expressed to produce rhuEPO bearing ß1,4-galactose-extended N-glycan chains as well as compare their ß1,4-galactosylation efficiencies. Five mammalian genes encoding enzymes/transporter for sialic acid biosynthesis, transport and transfer were co-expressed to build sialylation capacity in plants. The human MGAT3 was co-expressed to produce N-glycan chains with bisecting GlcNAc. Our results demonstrated that the above transgenes were incorporated into tobacco genome and transcribed. ST/GalT was found to be more efficient than GalT for ß1,4-galactosylation. Furthermore, co-expressing MGAT3 generated N-glycans likely bearing bisected GlcNAc. However, our current efforts did not result in generating sialylation capacity. Created transgenic plants expressing EPO and ST/GalT could be used to produce rhuEPO with high proportion of ß1,4-galactose-extended N-glycan chains for tissue protective purposes.
Assuntos
Eritropoetina/química , Eritropoetina/genética , Engenharia Genética , Nicotiana/genética , Polissacarídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Expressão Gênica , Genoma de Planta/genética , Glicosilação , Humanos , Nicotiana/metabolismoRESUMO
Glycoproteins are decorated with complex glycans for protein functions. However, regulation mechanisms of complex glycan biosynthesis are largely unclear. Here we found that bisecting GlcNAc, a branching sugar residue in N-glycan, suppresses the biosynthesis of various types of terminal epitopes in N-glycans, including fucose, sialic acid and human natural killer-1. Expression of these epitopes in N-glycan was elevated in mice lacking the biosynthetic enzyme of bisecting GlcNAc, GnT-III, and was conversely suppressed by GnT-III overexpression in cells. Many glycosyltransferases for N-glycan terminals were revealed to prefer a nonbisected N-glycan as a substrate to its bisected counterpart, whereas no up-regulation of their mRNAs was found. This indicates that the elevated expression of the terminal N-glycan epitopes in GnT-III-deficient mice is attributed to the substrate specificity of the biosynthetic enzymes. Molecular dynamics simulations further confirmed that nonbisected glycans were preferentially accepted by those glycosyltransferases. These findings unveil a new regulation mechanism of protein N-glycosylation.
Assuntos
Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferases/genética , Polissacarídeos/química , Polissacarídeos/genética , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Camundongos , Simulação de Dinâmica Molecular , Mutação , N-Acetilglucosaminiltransferases/metabolismo , Especificidade por SubstratoRESUMO
Bisecting GlcNAc, a branch structure in N-glycan, has unique functions and is involved in several diseases including Alzheimer's disease (AD). In this review, we provide an overview of the biosynthesis of bisecting GlcNAc and its physiological and pathological functions, particularly in the nervous system where bisecting GlcNAc is most highly expressed. The biosynthetic enzyme of bisecting GlcNAc is N-acetylglucosaminyltransferase-III (GnT-III). Overexpression, knockdown, and knockout of GnT-III have so far revealed various functions of bisecting GlcNAc, which are mediated by regulating the functions of key carrier proteins. GnT-III-deficient AD model mice showed reduced amyloid-ß (Aß) accumulation in the brain by suppressing the function of a key Aß-generating enzyme, ß-site APP-cleaving enzyme-1 (BACE1), and greatly improved AD pathology. Altered BACE1 subcellular localization in GnT-III-deficient cells, from early endosomes to lysosomes, suggests that bisecting GlcNAc serves as a trafficking tag for the movement of modified proteins to an endosomal compartment. For therapeutic application, we have employed high-throughput screening to search for GnT-III inhibitors. These findings highlight the importance of bisecting GlcNAc modification in the nervous system.
Assuntos
Acetilglucosamina/metabolismo , Encéfalo/metabolismo , Acetilglucosamina/biossíntese , Acetilglucosamina/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Humanos , Modelos Biológicos , Regulação para CimaRESUMO
The epithelial-mesenchymal transition (EMT) process plays a key role in many biological processes, including tissue fibrosis, metastatic diseases, and cancer progression. EMT can be induced by certain factors, notably hypoxia, in the tumor microenvironment. Aberrant levels of certain N-glycans is associated with cancer progression. We used an integrated strategy (mass spectrometry in combination with lectin microarray analysis) to elucidate aberrant glycosylation in a hypoxia-induced EMT model using breast cancer cell lines MCF7 and MDA-MB-231. The model showed reduced levels of bisecting GlcNAc structures, and downregulated expression of the corresponding glycosyltransferase MGAT3. MGAT3 overexpression in MCF7 suppressed cell migration, proliferation, colony formation, expression of EMT markers, and AKT signaling pathway, whereas MGAT3 knockdown (shRNA silencing) had opposite effects. Our findings clearly demonstrate the functional role (and effects of dysregulation) of bisecting GlcNAc structures in hypoxia-induced EMT, and provide a useful basis for further detailed studies of physiological functions of these structures in breast cancer.