Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
ACS Appl Mater Interfaces ; 16(30): 40222-40230, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39028921

RESUMO

We present a novel and stable laminated structure to enhance the performance and stability of silicon (Si) photocathode devices for photoelectrochemical (PEC) water splitting. First, by utilizing Cu nanoparticle catalysts to work on a n+p-black Si substrate via the metal-assisted chemical etching, we can achieve the black silicon with a porous pyramid structure. The low depth holes on the surface of the pyramid caused by Cu etching not only help enhance the light capture capability with quite low surface reflectivity (<5%) but also efficiently protect the p-n junction from damage. To improve the charge migration efficiency and mitigate parasitic light absorption from cocatalysts at the same time, we drop casted quantum dots (QDs) MoS2 with the size of nanometer scale as the first layer of catalyst. Hence, we then can safely electrodeposit cocatalyst Co nanoparticles to further enhance interface transfer efficiency. The synergistic effects of cocatalysts and optimized light absorption from the morphology and QDs contributed to the overall enhancement of PEC performance, offering a promising pathway for an efficient, low cost, and stable (over 100 h) hydrogen production photocathode.

2.
Nanomaterials (Basel) ; 14(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38869570

RESUMO

This article discusses a method for forming black silicon using plasma etching at a sample temperature range from -20 °C to +20 °C in a mixture of oxygen and sulfur hexafluoride. The surface morphology of the resulting structures, the autocorrelation function of surface features, and reflectivity were studied depending on the process parameters-the composition of the plasma mixture, temperature and other discharge parameters (radical concentrations). The relationship between these parameters and the concentrations of oxygen and fluorine radicals in plasma is shown. A novel approach has been studied to reduce the reflectance using conformal bilayer dielectric coatings deposited by atomic layer deposition. The reflectivity of the resulting black silicon was studied in a wide spectral range from 400 to 900 nm. As a result of the research, technologies for creating black silicon on silicon wafers with a diameter of 200 mm have been proposed, and the structure formation process takes no more than 5 min. The resulting structures are an example of the self-formation of nanostructures due to anisotropic etching in a gas discharge plasma. This material has high mechanical, chemical and thermal stability and can be used as an antireflective coating, in structures requiring a developed surface-photovoltaics, supercapacitors, catalysts, and antibacterial surfaces.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38660705

RESUMO

A novel property existing in the stain-etching technique that eliminates the need for expensive etchant masks in the texturization process of silicon wafers was identified. Through the combination of grayscale lithography and stain-etching methodologies, selective patterning of silicon with AR-P 3510 T, a positive-photoresist mask, was carried out. The etch area ratio was varied in nine different patterns of various feature sizes ranging from 400 to 1500 µm. The optical characteristics of the patterned substrates were determined from diffuse reflectance spectroscopy analysis, and the results were supported with finite-difference time-domain simulations. Complimenting the improvement in optical properties, the electrical losses in microwell-patterned photodetector devices have been reduced with an electro-optic optimum value of the surface enhancement factor, γ. The photodetecting efficiency of a selectively patterned microwell photodetector device exceeded the planar and black silicon photodetector devices with a considerable improvement in the pyro-phototronic effect. This work suggests an alternative for black silicon optoelectronic devices providing a new route to fabricate selectively patterned substrates with an achieved detectivity 16- and 20-fold higher than black and planar silicon photodetector devices, respectively.

4.
ACS Appl Mater Interfaces ; 16(2): 2921-2931, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38172042

RESUMO

Tellurium (Te)-doped black silicon (Si) with enhanced absorption and photoelectric performance over a broad wavelength range of 0.2-2.5 µm was obtained using femtosecond (fs) laser irradiation in liquid water. Prior to laser irradiation, the Si sample was covered with a Te thin film (thickness 200 nm) over an adhesion layer of Cr (thickness 5 nm). Surface analyses by scanning electron microscopy and three-dimensional confocal microscopy evidence the presence of hierarchical surface structures combining quasi-periodic stripes with a spatial period of about 5 µm and subwavelength laser-induced periodic surface structures directed in directions parallel and perpendicular to the direction of the laser polarization, respectively. Moreover, the incorporation of Te generates intermediate levels within the Si bandgap. The Te-doped black Si shows a significant enhancement of the absorption, which reaches values of about 48% in the UV and visible (0.2-1.1 µm) and 70% in the near-infrared (1.1-2.5 µm) spectral ranges, respectively, due to the synergistic effects of multiscale surface structures and Te incorporation. Moreover, the surface reflectance is reduced to almost zero across the entire spectrum. The Te-doped black Si sample is used to realize a photodetector which displays an impressive photoelectric capability, being characterized by a responsivity of 328 mA/W, and an external quantum efficiency of 49.27% at a voltage bias of -10 V for 1064 nm light illumination, with rising and falling times of 55 and 67 ms, respectively. These figures remarkably outperform the response of unprocessed Si under the same experimental conditions.

5.
ACS Appl Mater Interfaces ; 16(2): 2932-2939, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38179712

RESUMO

Black silicon (BS), a nanostructured silicon surface containing highly roughened surface morphology, has recently emerged as a promising candidate for field emission (FE) cathodes in novel electron sources due to its huge number of sharp tips with ease of large-scale fabrication and controllable geometrical shapes. However, evaluating the FE performance of BS-based nanostructures with high accuracy is still a challenge due to the increasing complexity in the surface morphology. Here, we demonstrate a 3D modeling methodology to fully characterize highly disordered BS-based field emitters randomly distributed on a roughened nonflat surface. We fabricated BS cathode samples with different morphological features to demonstrate the validity of this method. We utilize parametrized scanning electron microscopy images that provide high-precision morphology details, successfully describing the electric field distribution in field emitters and linking the theoretical analysis with the measured FE property of the complex nanostructures with high precision. The 3D model developed here reveals a relationship between the field emission performance and the density of the cones, successfully reproducing the classical relationship between current density J and electric field E (J-E curve). The proposed modeling approach is expected to offer a powerful tool to accurately describe the field emission properties of large-scale, disordered nano cold cathodes, thus serving as a guide for the design and application of BS as a field electron emission material.

6.
Heliyon ; 9(12): e22792, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125487

RESUMO

Silicon nano/microstructures are widely utilized in the semiconductor industry, and plasma etching is the most prominent method for fabricating silicon nano/microstructures. Among the variety of silicon nano/microstructures, black silicon with light-trapping properties has garnered broad interest from both the scientific and industrial communities. However, the fabrication mechanism of black silicon remains unclear, and the light absorption of black silicon only focuses on the near-infrared region thus far. Herein, we demonstrate that black silicon can be fabricated from individual flower-like silicon microstructures. Using fluorocarbon gases as etchants, silicon flower microstructures have been formed via maskless plasma etching. Black silicon forming from silicon flower microstructures exhibits strong absorption with wavelength from 0.25 µm to 20 µm. The result provides novel insight into the understanding of the plasma etching mechanism in addition to offering further significant practical applications for device manufacturing.

7.
Nanomaterials (Basel) ; 13(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836356

RESUMO

Ion-flow-stimulated roughening transition is a phenomenon that may prove useful in the hierarchical structuring of nanostructures. In this work, we have investigated theoretically and experimentally the surface texturing of single-crystal and multi-crystalline silicon wafers irradiated using ion-beam flows. In contrast to previous studies, ions had relatively low energies, whereas flow densities were high enough to induce a quasi-liquid state in the upper silicon layers. The resulting surface modifications reduced the wafer light reflectance to values characteristic of black silicon, widely used in solar energetics. Features of nanostructures on different faces of silicon single crystals were studied numerically based on the mesoscopic Monte Carlo model. We established that the formation of nano-pyramids, ridges, and twisting dune-like structures is due to the stimulated roughening transition effect. The aforementioned variety of modified surface morphologies arises due to the fact that the effects of stimulated surface diffusion of atoms and re-deposition of free atoms on the wafer surface from the near-surface region are manifested to different degrees on different Si faces. It is these two factors that determine the selection of the allowable "trajectories" (evolution paths) of the thermodynamic system along which its Helmholtz free energy, F, decreases, concomitant with an increase in the surface area of the wafer and the corresponding changes in its internal energy, U (dU>0), and entropy, S (dS>0), so that dF=dU - TdS<0, where T is the absolute temperature. The basic theoretical concepts developed were confirmed in experimental studies, the results of which showed that our method could produce, abundantly, black silicon wafers in an environmentally friendly manner compared to traditional chemical etching.

8.
Nanotechnology ; 35(2)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37769640

RESUMO

The morphology of regular and uniform arrays of black silicon structures was evaluated for bactericidal efficacy against gram-positive, non-motileStaphylococcusepidermidis(S.epidermidis). In this study, uniform and regular arrays of black silicon structures were fabricated using nanosphere lithography and deep reactive ion etching. The effects of nanomorphology on bacterial killing were systematically evaluated using silicon nanostructures with pitches ranging from 300 to 1400 nm pitch on spherical cocci approximately 500 to 1000 nm in diameter. Our results show that nanostructure morphology factors such as height and roughness do not directly determine bactericidal efficacy. Instead, the spacing between nanostructures plays a crucial role in determining how bacteria are stretched and lysed. Nanostructures with smaller pitches are more effective at killing bacteria, and an 82 ± 3% enhancement in bactericidal efficacy was observed for 300 nm pitch nanoneedles surface compared to the flat control substrates.


Assuntos
Nanoestruturas , Silício , Silício/farmacologia , Silício/química , Nanoestruturas/química , Bactérias , Bactérias Gram-Positivas , Antibacterianos/farmacologia , Antibacterianos/química
9.
ACS Appl Mater Interfaces ; 15(37): 44087-44096, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37669230

RESUMO

We report the use of thermal dewetting to structure gold-based catalytic etching masks for metal-assisted chemical etching (MACE). The approach involves low-temperature dewetting of metal films to generate metal holey meshes with tunable morphologies. Combined with MACE, dewetting-assisted patterning is a simple, benchtop route to synthesize Si nanotubes, Si nanowalls, and Si nanowires with defined dimensions and optical properties. The approach is compatible with the synthesis of both black and colored nanostructured silicon substrates. In particular, we report the lithography-free fabrication of silicon nanowires with diameters down to 40 nm that support leaky wave-guiding modes, giving rise to vibrant colors. Additionally, micrometer-sized areas with tunable film composition and thickness were patterned via shadow masking. After dewetting and MACE, such patterned metal films produced regions with distinct nanostructured silicon morphologies and colors. To-date, the fabrication of colored silicon has relied on complicated nanoscale patterning processes. Dewetting-assisted patterning provides a simpler alternative that eliminates this requirement. Finally, the simple transfer of resonant SiNWs into ethanolic solutions with well-defined light absorption properties is reported. Such solution-dispersible SiNWs could open new avenues for the fabrication of ultrathin optoelectronic devices with enhanced and tunable light absorption.

10.
Small ; 19(47): e2304001, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37495833

RESUMO

Even though the recent progress made in complementary metal-oxide-semiconductor (CMOS) image sensors (CIS) has enabled numerous applications affecting our daily lives, the technology still relies on conventional methods such as antireflective coatings and ion-implanted back-surface field to reduce optical and electrical losses resulting in limited device performance. In this work, these methods are replaced with nanostructured surfaces and atomic layer deposited surface passivation. The results show that such surface nanoengineering applied to a commercial backside illuminated CIS significantly extends its spectral range and enhances its photosensitivity as demonstrated by >90% quantum efficiency in the 300-700 nm wavelength range. The surface nanoengineering also reduces the dark current by a factor of three. While the photoresponse uniformity of the sensor is seen to be slightly better, possible scattering from the nanostructures can lead to increased optical crosstalk between the pixels. The results demonstrate the vast potential of surface nanoengineering in improving the performance of CIS for a wide range of applications.

11.
Discov Nano ; 18(1): 82, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37382766

RESUMO

In order to solve the problem of near-infrared (NIR) absorbance attenuation of silicon, a method of preparing gold nanoparticles (AuNPs) on the micro-nano-structured black silicon (B-Si) is proposed. In this study, the local surface plasmon resonance (LSPR) of AuNPs excited by a light field is used to achieve B-Si materials with broad spectrum and high absorption. The results show that nanometer B-Si composited with 25-nm AuNPs has an average absorption of 98.6% in the spectral range of 400-1100 nm and 97.8% in the spectral range of 1100-2500 nm. Compared with ordinary B-Si, the absorption spectrum is broadened from 400-1100 nm to 400-2500 nm, and the absorption is increased from 90.1 to 97.8% at 1100-2500 nm. It is possible to use the B-Si materials in the field of NIR-enhanced photoelectric detection and micro-optical night vision imaging due to the low cost, high compatibility, and reliability.

12.
Small ; 19(39): e2302250, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259265

RESUMO

Cutting costs by progressively decreasing substrate thickness is a common theme in the crystalline silicon photovoltaic  industry for the last decades, since drastically thinner wafers would significantly reduce the substrate-related costs. In addition to the technological challenges concerning wafering and handling of razor-thin flexible wafers, a major bottleneck is to maintain high absorption in those thin wafers. For the latter, advanced light-trapping techniques become of paramount importance. Here we demonstrate that by applying state-of-the-art black-Si nanotexture produced by DRIE on thin uncommitted wafers, the maximum theoretical absorption (Yablonovitch's 4n2 absorption limit), that is, ideal light trapping, is reached with wafer thicknesses as low as 40, 20, and 10 µm when paired with a back reflector. Due to the achieved promising optical properties the results are implemented into an actual thin interdigitated back contacted solar cell. The proof-of-concept cell, encapsulated in glass, achieved a 16.4% efficiency with an JSC  = 35 mA cm- 2 , representing a 43% improvement in output power with respect to the reference polished cell. These results demonstrate the vast potential of black silicon nanotexture in future extremely-thin silicon photovoltaics.

13.
J Funct Biomater ; 14(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37233355

RESUMO

Silicon microneedle (Si-MN) systems are a promising strategy for transdermal drug delivery due to their minimal invasiveness and ease of processing and application. Traditional Si-MN arrays are usually fabricated by using micro-electro-mechanical system (MEMS) processes, which are expensive and not suitable for large-scale manufacturing and applications. In addition, Si-MNs have a smooth surface, making it difficult for them to achieve high-dose drug delivery. Herein, we demonstrate a solid strategy to prepare a novel black silicon microneedle (BSi-MN) patch with ultra-hydrophilic surfaces for high drug loading. The proposed strategy consists of a simple fabrication of plain Si-MNs and a subsequent fabrication of black silicon nanowires. First, plain Si-MNs were prepared via a simple method consisting of laser patterning and alkaline etching. The nanowire structures were then prepared on the surfaces of the plain Si-MNs to form the BSi-MNs through Ag-catalyzed chemical etching. The effects of preparation parameters, including Ag+ and HF concentrations during Ag nanoparticle deposition and [HF/(HF + H2O2)] ratio during Ag-catalyzed chemical etching, on the morphology and properties of the BSi-MNs were investigated in detail. The results show that the final prepared BSi-MN patches exhibit an excellent drug loading capability, more than twice that of plain Si-MN patches with the same area, while maintaining comparable mechanical properties for practical skin piercing applications. Moreover, the BSi-MNs exhibit a certain antimicrobial activity that is expected to prevent bacterial growth and disinfect the affected area when applied to the skin.

14.
Nanomaterials (Basel) ; 13(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37177101

RESUMO

Structural anti-reflective coating and bactericidal surfaces, as well as many other effects, rely on high-aspect-ratio (HAR) micro- and nanostructures, and thus, are of great interest for a wide range of applications. To date, there is no widespread fabrication of dense or isolated HAR nanopillars based on UV nanoimprint lithography (UV-NIL). In addition, little research on fabricating isolated HAR nanopillars via UV-NIL exists. In this work, we investigated the mastering and replication of HAR nanopillars with the smallest possible diameters for dense and isolated arrangements. For this purpose, a UV-based nanoimprint lithography process was developed. Stability investigations with capillary forces were performed and compared with simulations. Finally, strategies were developed in order to increase the stability of imprinted nanopillars or to convert them into nanoelectrodes. We present UV-NIL replication of pillars with aspect ratios reaching up to 15 with tip diameters down to 35 nm for the first time. We show that the stability could be increased by a factor of 58 when coating them with a 20 nm gold layer and by a factor of 164 when adding an additional 20 nm thick layer of SiN. The coating of the imprints significantly improved the stability of the nanopillars, thus making them interesting for a wide range of applications.

15.
Materials (Basel) ; 16(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903063

RESUMO

Black silicon (bSi) is a highly absorptive material in the UV-vis and NIR spectral range. Photon trapping ability makes noble metal plated bSi attractive for fabrication of surface enhanced Raman spectroscopy (SERS) substrates. By using a cost-effective room temperature reactive ion etching method, we designed and fabricated the bSi surface profile, which provides the maximum Raman signal enhancement under NIR excitation when a nanometrically-thin gold layer is deposited. The proposed bSi substrates are reliable, uniform, low cost and effective for SERS-based detection of analytes, making these materials essential for medicine, forensics and environmental monitoring. Numerical simulation revealed that painting bSi with a defected gold layer resulted in an increase in the plasmonic hot spots, and a substantial increase in the absorption cross-section in the NIR range.

16.
Nanomaterials (Basel) ; 14(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202476

RESUMO

For uncooled infrared cameras based on microbolometers, silicon caps are often utilized to maintain a vacuum inside the packaged bolometer array. To reduce Fresnel reflection losses, anti-reflection coatings are typically applied on both sides of the silicon caps.This work investigates whether black silicon may be used as an alternative to conventional anti-reflective coatings. Reactive ion etching was used to etch the black silicon layer and deep cavities in silicon. The effects of the processed surfaces on optical transmission and image quality were investigated in detail by Fourier transform infrared spectroscopy and with modulated transfer function measurements. The results show that the etched surfaces enable similar transmission to the state-of-the-artanti-reflection coatings in the 8-12 µm range and possibly obtain wider bandwidth transmission up to 24 µm. No degradation in image quality was found when using the processed wafers as windows. These results show that black silicon can be used as an effective anti-reflection layer on silicon caps used in the vacuum packaging of microbolometer arrays.

17.
Adv Sci (Weinh) ; 9(33): e2203234, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36253154

RESUMO

Photodiodes are fundamental components in modern optoelectronics. Heterojunction photodiodes, simply configured by two different contact materials, have been a hot research topic for many years. Currently reported self-biased heterojunction photodiodes routinely have external quantum efficiency (EQE) significantly below 100% due to optical and electrical losses. Herein, an approach that virtually overcomes this 100% EQE challenge via low-aspect-ratio nanostructures and drift-dominated photocarrier transport in a heterojunction photodiode is proposed. Broadband near-ideal EQE is achieved in nanocrystal indium tin oxide/black silicon (nc-ITO/b-Si) Schottky photodiodes. The b-Si comprises nanostalagmites which balance the antireflection effect and surface morphology. The built-in electric field is explored to match the optical generation profile, realizing enhanced photocarrier transport over a broadband of photogeneration. The devices exhibit unprecedented EQE among the reported leading-edge heterojunction photodiodes: average EQE surpasses ≈98% for wavelengths of 570-925 nm, while overall EQE is greater than ≈95% from 500 to 960 nm. Further, only elementary fabrication techniques are explored to achieve these excellent device properties. A heart rate sensor driven by nanowatt faint light is demonstrated, indicating the enormous potential of this near-ideal b-Si photodiode for low power consuming applications.

18.
Nanotechnology ; 34(1)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36164977

RESUMO

Atomic layer deposited (ALD) Al2O3coatings were applied on black silicon (b-Si) structures. The coated nanostructures were investigated regarding their reflective and transmissive behaviour. For a systematic study of the influence of the Al2O3coating, ALD coatings with a varying layer thickness were deposited on three b-Si structures with different morphologies. With a scanning electron microscope the morphological evolution of the coating process on the structures was examined. The optical characteristics of the different structures were investigated by spectral transmission and reflection measurements. The usability of the structures for highly efficient absorbers and antireflection (AR) functionalities in the different spectral regions is discussed.

19.
Heliyon ; 8(8): e10072, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35982841

RESUMO

This work investigates properties of PEDOT:PSS on flexible black silicon (bSi) for a hybrid solar cell on textured polyimide (PI) substrate. The flexible bSi is formed by thinning down crystalline silicon (cSi) wafers to 65 µm thickness, followed by fabrication of bSi nanowires (NWs) on the wafer surface using one-step metal-catalyzed electroless etching (MCEE) technique. The resulting bSi NWs exhibit an average diameter of around 90-100 nm and length of 900 nm. Then, PEDOT:PSS with a thickness of 150 nm is coated on the flexible cSi and bSi NWs. For texturing of PI, copper-seeding technique is used. The planar and textured PI substrates are then attached to the back of the flexible cSi and bSi. The PEDOT:PSS/flexible bSi on PI substrate shows lower broadband reflection when compared to PEDOT:PSS/flexible cSi. This is due to the presence of bSi NWs on wafer surface which leads to refractive index grading effect. The PEDOT:PSS/flexible bSi solar cell on the textured PI substrate demonstrates conversion efficiency of 2.58%. This is contributed by the increased short-circuit current density (Jsc) in the device (when compared to the device on planar PI), owing to the enhanced light absorption above wavelength of 800 nm.

20.
ACS Appl Mater Interfaces ; 14(31): 36189-36199, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35767685

RESUMO

Combining black silicon (BS), a nanostructured silicon containing highly roughened surface morphology with plasmonic materials, is becoming an attractive approach for greatly enhancing light-matter interactions with promising applications of sensing and light harvesting. However, precisely describing the optical response of a heavily decorated BS structure is still challenging due to the increasing complexity in surface morphology and plasmon hybridization. Here, we propose and fully characterize BS-based multistacked nanostructures with randomly distributed nanoparticles on the highly roughened nonflat surface. We demonstrate a realistic 3D modeling methodology based on parametrized scanning electron microscopy images that provides high-precision morphology details, successfully linking the theoretical analysis with experimental optical response of the complex nanostructures. Far-field calculations very nicely reproduce experimental reflectance spectra, revealing the dependency of light trapping on the thickness of the conformal reflector and the atop nanoparticle size. Near-field analysis clearly identifies three types of stochastic "hotspots". Their contribution to the overall field enhancement is shown to be very much sensitive to the nanoscale surface morphology. The simulated near-field property is then used to examine the measured surface-enhanced Raman scattering (SERS) response on the multistacked structures. The present modeling approach combined with spectroscopic characterizations is expected to offer a powerful tool for the precise description of the optical response of other large-scale highly disordered realistic 3D systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA