Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Mol Biosci ; 11: 1376345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560521

RESUMO

Introduction: Danggui Buxue Decoction (DBD) is a clinically proven, effective, classical traditional Chinese medicine (TCM) formula for treating blood deficiency syndrome (BDS). However, its effects and effective constituents in the treatment of BDS remain unclear, limiting precise clinical therapy and quality control. This study aimed to accurately evaluate the effects of DBD and identify its effective constituents and quality markers. Methods: BDS was induced in rats by a combined injection of acetylphenylhydrazine and cyclophosphamide, and the efficacy of DBD against BDS was evaluated based on body weight, body temperature, energy metabolism, general status, visceral indices, histopathology, biochemical markers, and metabolomics. The effects of DBD on urinary and serum biomarkers of BDS were investigated, and the associated metabolic pathways were analyzed via metabolomics. Guided by Chinmedomics, the effective constituents and quality markers of DBD were identified by analyzing the dynamic links between metabolic biomarkers and effective constituents in vivo. Results: DBD improved energy metabolism, restored peripheral blood and serum biochemical indices, and meliorated tissue damage in rats with BDS. Correlation analyses between biochemical indices and biomarkers showed that 15(S)-HPETE, LTB4, and taurine were core biomakers and that arachidonic acid, taurine, and hypotaurine metabolism were core metabolic pathways regulated by DBD. Calycosin-7-glucoside, coumarin, ferulic acid sulfate, cycloastragenol, (Z)-ligustilide + O, astragaloside IV, acetylastragaloside I, and linoleic acid were identified as effective constituents improving the hematopoietic function of the rats in the BDS model. Additionally, calycosin-7-glucoside, ferulic acid, ligustilide, and astragaloside IV were identified as quality markers of DBD. Conclusion: The hematopoietic function of DBD was confirmed through analysis of energy metabolism, biochemical markers, histopathology, and metabolomics. Moreover, by elucidating effective constituents of DBD in BDS treatment, quality markers were confirmed using a Chinmedomics strategy. These results strengthen the quality management of DBD and will facilitate drug innovation.

2.
Chin J Nat Med ; 21(3): 197-213, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003642

RESUMO

Angelicae Sinensis Radix (AS) is reproted to exert anti-depression effect (ADE) and nourishing blood effect (NBE) in a rat model of depression. The correlation between the two therapeutic effects and its underlying mechanisms deserves further study. The current study is designed to explore the underlying mechanisms of correlation between the ADE and NBE of AS based on hepatic metabonomics, network pharmacology and molecular docking. According to metabolomics analysis, 30 metabolites involved in 11 metabolic pathways were identified as the potential metabolites for depression. Furthermore, principal component analysis and correlation analysis showed that glutathione, sphinganine, and ornithine were related to pharmacodynamics indicators including behavioral indicators and hematological indicators, indicating that metabolic pathways such as sphingolipid metabolism were involved in the ADE and NBE of AS. Then, a target-pathway network of depression and blood deficiency syndrome was constructed by network pharmacology analysis, where a total of 107 pathways were collected. Moreover, 37 active components obtained from Ultra Performance Liquid Chromatography-Triple-Time of Flight Mass Spectrometer (UPLC-Triple-TOF/MS) in AS extract that passed the filtering criteria were used for network pharmacology, where 46 targets were associated with the ADE and NBE of AS. Pathway enrichment analysis further indicated the involvement of sphingolipid metabolism in the ADE and NBE of AS. Molecular docking analysis indciated that E-ligustilide in AS extract exhibited strong binding activity with target proteins (PIK3CA and PIK3CD) in sphingolipid metabolism. Further analysis by Western blot verified that AS regulated the expression of PIK3CA and PIK3CD on sphingolipid metabolism. Our results demonstrated that sphingolipid metabolic pathway was the core mechanism of the correlation between the ADE and NBE of AS.


Assuntos
Medicamentos de Ervas Chinesas , Farmacologia em Rede , Ratos , Animais , Ratos Sprague-Dawley , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/química , Metabolômica/métodos , Espectrometria de Massas
3.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3562-3568, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850810

RESUMO

Based on the theory of activating spleen and generating blood, this study explored the effect of Rehmanniae Radix Prae-parata on the spleen metabolome of the rat model with blood deficiency syndrome.The rat model of blood deficiency syndrome was established by combining with cyclophosphamide(CTX) and N-acetyl-phenylhydrazine(APH), and the metabolomes of the spleen samples were analyzed with ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS).Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were carried out for the metabolite profiles of spleen samples.The MEV heatmap and metabolic network were established based on the potential biomarkers.Finally, the blood routine indexes were combined with the metabolomic profile to reveal the mechanism of Rehmanniae Radix Praeparata in activating spleen and generating blood.The treatment with CTX and APH decreased the blood routine indexes such as white blood cell count(WBC), red blood cell count(RBC), platelet(PLT), and hematocrit(HCT), indicating that the rat model of blood deficiency syndrome was successfully established.The administration of Rehmanniae Radix Praeparata significantly improved the blood routine indexes, which suggested that Rehmanniae Radix Praeparata played a role in replenishing blood.In addition, the metabolomics analysis identified 41 potential biomarkers.The PCA and MEV heatmap also showed significant improvement effect of Rehmanniae Radix Praeparata on the spleen metabolic profile.These potential biomarkers were mainly involved in tricarboxylic acid cycle, niacin and nicotinamide metabolism, phenylalanine metabolism, tyrosine metabolism, taurine and hypotaurine metabolism, and sphingolipid metabolism.Therefore, we hypothesize that Rehmanniae Radix Praeparata may regulate energy metabolism, peripheral blood production, and oxidative injury of hemocytes to tonify blood.


Assuntos
Medicamentos de Ervas Chinesas , Animais , Biomarcadores , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica , Extratos Vegetais , Ratos , Rehmannia , Baço
4.
Front Immunol ; 13: 813676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250989

RESUMO

Polygonatum sibiricum Red. has been used as a medicinal herb and nutritional food in traditional Chinese medicine for a long time. It must be processed prior to clinical use for safe and effective applications. However, the present studies mainly focused on crude Polygonatum sibiricum (PS). This study aimed to investigate the chemical properties, blood-enriching effects and mechanism of polysaccharide from the steam-processed Polygonatum sibiricum (SPS), which is a common form of PS in clinical applications. Instrumentation analyses and chemistry analyses revealed the structure of SPS polysaccharide (SPSP). A mice model of blood deficiency syndrome (BDS) was induced by acetylphenylhydrazine (APH) and cyclophosphamide (CTX). Blood routine test, spleen histopathological changes, serum cytokines, etc. were measured. The spleen transcriptome changes of BDS mice were detected by RNA sequencing (RNA-seq). The results showed that SPSP consists predominantly of Gal and GalA together with fewer amounts of Man, Glc, Ara, Rha and GlcN. It could significantly increase peripheral blood cells, restore the splenic trabecular structure, and reverse hematopoietic cytokines to normal levels. RNA-seq analysis showed that 122 differentially expressed genes (DEGs) were obtained after SPSP treatment. GO and KEGG analysis revealed that SPSP-regulated DEGs were mainly involved in hematopoiesis, immune regulation signaling pathways. The reliability of transcriptome profiling was validated by quantitative real-time PCR and Western blot, and the results indicated that the potential molecular mechanisms of the blood-enriching effects of SPSP might be associated with the regulating of JAK1-STAT1 pathway, and elevated the hematopoietic cytokines (EPO, G-CSF, TNF-α and IL-6). This work provides important information on the potential mechanisms of SPSP against BDS.


Assuntos
Doenças Hematológicas , Polygonatum , Polissacarídeos , Animais , Citocinas/metabolismo , Doenças Hematológicas/imunologia , Doenças Hematológicas/metabolismo , Camundongos , Polygonatum/química , Polygonatum/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Reprodutibilidade dos Testes , Vapor
5.
Biomed Chromatogr ; 36(2): e5252, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34591996

RESUMO

Angelica sinensis (AS) is a common Traditional Chinese Medicine used for tonifying blood in China. Unprocessed AS and its four kinds of processed products (ASs) are used to treat blood deficiency syndrome in the country. The different blood-tonifying mechanisms of ASs remain unclear. In this work, a novel method integrating metabolomics and hematological and biochemical parameters was established to provide a complementary explanation of blood supplementation mechanism of ASs. Our results revealed that different ASs exhibited various blood supplementation effect, and that AS parched with alcohol demonstrated the best blood supplementation effect. Eight metabolites from liver tissue and 12 metabolites from spleen tissue were considered to be potential biomarkers. These biomarkers were involved in four metabolic pathways. Correlation analysis results showed that l-aspartic acid and l-alanine (spleen tissue), linoleic acid, and l-cystathionine (liver tissue) exhibited a high positive or negative correlation with the aforesaid biochemical indicators. The blood-supplementation effect mechanism of ASs were related to four metabolic pathways. l-Aspartic acid and l-alanine (spleen tissue), linoleic acid, and l-cystathionine (liver tissue) were the four key metabolites associated with the blood supplementation effect of ASs. This study gives a complementary explanation of the blood supplementation effect and mechanism of action of ASs.


Assuntos
Angelica sinensis/química , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Metaboloma/efeitos dos fármacos , Aminoácidos/metabolismo , Animais , Cromatografia Gasosa-Espectrometria de Massas , Ácido Linoleico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metabolômica/métodos , Camundongos , Baço/efeitos dos fármacos , Baço/metabolismo
6.
Biomed Pharmacother ; 118: 109291, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31401395

RESUMO

As a health-care food and traditional Chinese medicine, E'jiao, from the skin of Equus animus L, has been used to nourish blood in China for more than 2000 years. In modern medicine, there are also evidences indicate it has a beneficial effect on chemotherapy-caused blood deficiency. However, its mechanism of action for blood invigoration remains unclear. In the present study, we investigated the hematopoietic effect of E'jiao in 5-Fluorouracil-treated mice. In addition to the counting of bone marrow nucleated cells (BMNCs), flow cytometry was used to detect the population of hematopoietic stem cells (HSCs), and colony-forming unit (CFU) was used to assay the differentiation ability of hematopoietic progenitor cells (HPCs). Gene expression profiles of bone marrow cells were obtained from RNA sequencing (RNA-seq) and differentially expressed genes (DEGs) were analyzed with an emphasis on hematopoiesis-related pathways. The results show that E'jiao promotes the proliferation of both BMNCs and HSCs, as well as the differentiation of HPCs. By providing a hematopoiesis-related molecular regulatory network of E'jiao, we point out that the mechanism of E'jiao is associated with pathways including ECM-receptor interaction, Wnt signaling pathway, PI3K-Akt signaling pathway, TGF-beta signaling pathway, Hematopoietic cell lineage and Osteoclast differentiation, in which Ibsp, Col1a1, Col1a2, Notum, Sost, Dkk1, Irx5, Irx3 and Dcn are the key regulatory molecules. These findings provide valuable molecular basis for the mechanism of action of E'jiao.


Assuntos
Fluoruracila/farmacologia , Gelatina/farmacologia , Perfilação da Expressão Gênica , Hematopoese/efeitos dos fármacos , Análise de Sequência de RNA , Animais , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Hematopoese/genética , Camundongos , Camundongos Endogâmicos BALB C
7.
Biomed Chromatogr ; 33(11): e4617, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31207665

RESUMO

Siwu decoction (SWD), a traditional Chinese medicinal formula with over 1000 years of clinical history, is widely used for gynecological disease, especially blood deficiency syndrome, which is similar to anemia in modern medicine. In view of metabonomics being useful approach to investigate the potential mechanisms of action from the point of view of systems biology, in this study an ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry method was employed for a holistic evaluation of SWD on a blood-deficiency rat model induced by N-acetylphenylhydrazine and cyclophosphamide via plasma metabonomics study. Routine blood examination results showed that SWD could significantly improve the declining hemogram indices. Meanwhile, the plasma metabonomics profiles in different groups were analyzed and differentiating metabolites were primarily visualized through chemometric analysis. Seven biomarkers were identified in plasma samples of blood-deficiency rat model compared with the normal group. Five main metabolism pathways were suggested using the Kyoto Encyclopedia of Genes and Genomes Pathway Analysis and Pathway Activity Profiling algorithm analysis. This indicated that SWD played a therapeu role in blood deficiency by regulating the aberrant endogenous metabolites. To sum up, this study provides clear evidence that a metabonomics study could serve as a useful tool to elucidate the systematic therapeutic profiles and mechanisms for blood deficiency syndrome of Chinese herbal medicines.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacologia , Doenças Hematológicas/metabolismo , Espectrometria de Massas/métodos , Metaboloma , Animais , Feminino , Masculino , Medicina Tradicional Chinesa , Metaboloma/efeitos dos fármacos , Metaboloma/fisiologia , Metabolômica/métodos , Ratos
8.
Front Pharmacol ; 10: 1578, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038252

RESUMO

Panax notoginseng (Burk.) F. H. Chen is a medicinal herb used to treat blood disorders since ancient times, of which the steamed form exhibits the anti-anemia effect and acts with a "blood-tonifying" function according to traditional use. The present study aimed to investigate the anti-anemia effect and underlying mechanism of steamed P. notoginseng (SPN) on mice with blood deficiency syndrome induced by chemotherapy. Blood deficiency syndrome was induced in mice by cyclophosphamide and acetylphenylhydrazine. A number of peripheral blood cells and organs (liver, kidney, and spleen) coefficients were measured. The mRNA expression of hematopoietic function-related cytokines in the bone marrow of mice was detected by RT-qPCR. The janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway was screened based on our previous analysis by network pharmacology. The expression of related proteins and cell cycle factors predicted in the pathway was determined by Western blot and RT-qPCR. SPN could significantly increase the numbers of peripheral blood cells and reverse the enlargement of spleen in a dose-dependent manner. The quantities of related hematopoietic factors in bone marrow were also increased significantly after SPN administration. SPN was involved in the cell cycle reaction and activation of immune cells through the JAK-STAT pathway, which could promote the hematopoiesis.

9.
J Ethnopharmacol ; 211: 101-116, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28958590

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Angelica sinensis (AS), root of Angelica sinensis (Oliv.) Diels, an important kind of Chinese traditional herbal medicine, has been used for women to enrich the blood for thousands of years. It is mainly distributed in Gansu province of China. According to Traditional Chinese medicine usage, unprocessed AS (UAS) and its 4 kinds of processed products (ASs) are all used to treat different diseases or syndromes. The difference among the enriching-blood effects of ASs is unclear. And their exact mechanisms of enriching the blood are not fully understood. AIM OF THE STUDY: In this study, our aim is to compare the enriching-blood effect and explain the related mechanism of ASs, to lay the foundation for the blood deficiency diagnosis and the rational use of ASs in the clinic. MATERIALS AND METHODS: ASs were used to intervene the blood deficiency syndrome model mice induced by acetyl phenylhydrazine (APH) and cyclophosphamide (CTX). A novel approach using metabolomics coupled with hematological and biochemical parameters to explain the enriching-blood effect and mechanism of ASs was established. The blood routine examination, ATPase, glucose-6-phosphate dehydrogenase, methemoglobin, glutathion peroxidase, glutathione reductase, and erythropoietin were measured. Two biofluids (plasma and urine) obtained from mice were analyzed with GC-MS. Distinct changes in metabolite patterns of the two biofluids after mice were induced by APH and CTX, and mice were intervened with ASs were analyzed using partial least squares-discriminant analysis. Potential biomarkers were found using a novel method including variable importance in the projection (VIP) >1.0, volcano plot analysis, and significance analysis of microarray. RESULTS: The results of hematological, biochemical parameters and the integrated metabolomics all showed the blood deficiency syndrome model was built successfully, ASs exhibited different degree of enriching-blood effect, and AS pached with alcohol (AAS) exhibited the best enriching-blood effect. 16 metabolites in the plasma and 8 metabolites in the urine were considered as the potential biomarkers. These metabolites were involved in 7 metabolic pathways which were concerned with the different enriching-blood effect mechanisms of ASs. The correlation analysis results confirmed L-Valine (plasma), Linoleic acid (urine), L-Aspartic acid (urine) and Cholesterol (urine) were strong positive or negative associated with biochemical indicators. CONCLUSIONS: The enriching-blood effects of ASs are different. The pathological mechanisms of blood deficiency syndrome and the enriching-blood effect mechanism of ASs are involved in 7 metabolic pathways. L-Valine (plasma), Linoleic acid (urine), L-Aspartic acid (urine), Cholesterol (urine) are four important biomarkers being related to the enriching-blood effect of ASs. The combination of VIP, volcano plot analysis and significance analysis of microarray is suitable for screening biomarkers in metabolomics study. They can lay the foundation for clinical practice.


Assuntos
Angelica sinensis , Doenças Hematológicas/metabolismo , Preparações de Plantas/farmacologia , Animais , Contagem de Células Sanguíneas , Ciclofosfamida , Doenças Hematológicas/sangue , Doenças Hematológicas/induzido quimicamente , Doenças Hematológicas/tratamento farmacológico , Hematopoese/efeitos dos fármacos , Masculino , Medicina Tradicional Chinesa , Metabolômica , Camundongos , Fenil-Hidrazinas , Preparações de Plantas/uso terapêutico , Raízes de Plantas
10.
World J Gastroenterol ; 3(3): 180-1, 1997 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27239145

RESUMO

AIM: To investigate the pathophysiology of erythrocyte energy metabolic changes of patients with the traditional Chinese Medicine (TCM) liver-blood deficiency syndrome (LBDS). METHODS: Erythrocyte membrane ATPase activity and oxygen consumption rate (OCR) were determined in 66 patients with LBDS, including 35 patients with iron deficiency anemia and 31 patients with chronic aplastic anemia. Thirty healthy adults served as controls. RESULTS: ATPase activity and OCR were decreased in patients with LBDS. CONCLUSION: The decreased erythrocyte ATPase activity and OCR might cause the energy hypometabolism in LBDS patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA