Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39027083

RESUMO

The hard tick Ixodes ricinus transmits a variety of zoonotic pathogens, including Babesia divergens, the most common cause of bovine babesiosis in northern Europe. In endemic areas, cattle are rarely clinically affected, as animals up to the age of nine months are resistant against relevant clinical disease and develop protective premunity. However, outbreaks in immunologically naïve herds may lead to considerable losses. Such an outbreak with a high mortality rate occurred in 2018 on a northern German beef production farm, as previously reported. The present study provides an update on the epidemiological situation and management strategy of the farm. In spring 2022, blood samples were taken from 46 animals for PCR and serological testing before pasture turnout. Although no clinical cases had been noticed since 2019, B. divergens DNA was detected by quantitative real-time PCR (qPCR), followed by amplification and sequencing of the 18S rRNA gene, in 6.5% (3/46) of cattle blood samples. Presence of anti-B. divergens antibodies was confirmed in 26.1% (12/46) of animals, while further 10.9% (5/46) had a borderline antibody titre. The antibody status of 23 of these animals had already been determined in 2018 and/or 2020, revealing fluctuating titre patterns indicative of repeated pathogen exposure. Moreover, 457 questing I. ricinus specimens collected on the farm's pastures and 83 I. ricinus specimens detached from cattle were screened for Babesia spp. DNA by qPCR, followed by 18S rDNA amplification and sequencing. Endemisation of B. divergens was confirmed by 0.9% (4/457) positive questing I. ricinus, while the ticks detached from cattle were Babesia-negative. The farm's management strategy includes annual metaphylactic treatment with imidocarb dipropionate during the main tick exposure period in spring. However, the antibody titre fluctuations and the persistent infections at the end of the housing period indicate that the absence of clinical disease is primarily due to a rising level of premunity. Metaphylactic treatment with imidocarb seems to be a suitable management option to protect newly acquired immunologically naïve animals. The endemisation of B. divergens is also of public health significance, as the pastures are located close to a tourist destination in a popular hiking area.

2.
Ticks Tick Borne Dis ; 15(6): 102374, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971081

RESUMO

The Asian longhorned tick (Haemaphysalis longicornis) was first reported in the United States in 2017 and has since been detected in at least 17 states. This tick infests cattle and can produce large populations quickly due to its parthenogenetic nature, leading to significant livestock mortalities and economic losses. While H. longicornis has not been detected in Texas, species distribution models have identified southern Texas as a possible hospitable region for this tick. Southern Texas is currently home to the southern cattle tick (Rhipicephalus microplus), which can transmit the causative agent of cattle fever (Babesia bovis). With the potential for H. longicornis and B. bovis to overlap in southern Texas and their potential to negatively impact the national and global livestock industry, it is imperative to identify the role H. longicornis may play in the cattle fever disease system. A controlled acquisition and transmission experiment tested whether H. longicornis is a vector for B. bovis, with the R. microplus-B. bovis system used as a positive control. Transstadial (nymphs to adults) and transovarial (adults to larvae) transmission and subsequent transstadial maintenance (nymphs and adults) routes were tested in this study. Acquisition-fed, splenectomized animals were used to increase the probability of tick infection. Acquisition nymphs were macerated whole and acquisition adults were dissected to remove midguts and ovaries at five time points (4, 6, 8, 10, and 12 days post-repletion), with 40 ticks processed per time point and life stage. The greatest percentage of nymphs with detectable B. bovis DNA occurred six days post-repletion (20.0 %). For adults, the percentage of positive midguts and ovaries increased as days post-repletion progressed, with day 12 having the highest percentage of positive samples (67.5 % and 60.0 %, respectively). When egg batches were tested in triplicate, all H. longicornis egg batches were negative for B. bovis, while all R. microplus egg batches were positive for B. bovis. During the transmission phase, the subsequent life stages for transstadial (adults) and transovarial transmission/transstadial maintenance (larvae, nymphs, and adults) were fed on naïve, splenectomized calves. All life stages of H. longicornis ticks tested during transmission were negative for B. bovis. Furthermore, the transmission fed animals were also negative for B. bovis and did not show signs of bovine babesiosis during the 45-day post tick transmission period. Given the lack of successful transstadial or transovarial transmission, it is unlikely that H. longicornis is a vector for B. bovis.

3.
Parasit Vectors ; 17(1): 245, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824598

RESUMO

BACKGROUND: Bovine babesiosis is caused by infection with the protozoal parasite Babesia bovis, which is transmitted by Rhipicephalus (Boophilus) spp. It can cause mortality rates up to 90% in immunologically naive Bos taurus cattle. In south Texas, R. (B.) microplus is known to infest nilgai antelope (Boselaphus tragocamelus); however, their susceptibility to infection with B. bovis and their role in the transmission of the parasite remain unknown. In this study, we challenged nilgai antelope with B. bovis and evaluated their susceptibility to infection. METHODS: Nilgai were needle inoculated with ≈108 B. bovis-parasitized erythrocytes (merozoites) or a homogenate of B. bovis-infected larval ticks (sporozoite) delivered intravenously. Bos taurus beef calves were inoculated in parallel, as this strain of B. bovis is lethal to cattle. Temperature and hematocrit were monitored daily over the course of each study, and whole blood was collected for molecular [polymerase chain reaction (PCR)] and serological [indirect enzyme-linked immunosorbent assay (ELISA)] diagnostic evaluation. Histological sections of nilgai cerebral tissue were examined for evidence of infection. Recipient bovine calves were sub-inoculated with blood from nilgai challenged with either stage of the parasite, and they were monitored for clinical signs of infection and evaluated by a PCR diagnostic assay. Red blood cells (RBCs) from prechallenged nilgai and B. taurus beef cattle were cultured with an in vitro B. bovis merozoite culture to examine colonization of the RBCs by the parasite. RESULTS: Nilgai did not display clinical signs of infection upon inoculation with either the merozoite or sporozoite stage of B. bovis. All nilgai were PCR-negative for the parasite, and they did not develop antibodies to B. bovis. No evidence of infection was detected in histological sections of nilgai tissues, and in vitro culture analysis indicated that the nilgai RBCs were not colonized by B. bovis merozoites. Cattle subinoculated with blood from challenged nilgai did not display clinical signs of infection, and they were PCR-negative up to 45 days after transfer. CONCLUSIONS: Nilgai do not appear to be susceptible to infection with a strain of B. bovis that is lethal to cattle. Tick control on these alternative hosts remains a critical priority, especially given their potential to disseminate ticks over long distances.


Assuntos
Antílopes , Babesia bovis , Babesiose , Animais , Babesia bovis/genética , Babesia bovis/patogenicidade , Babesia bovis/isolamento & purificação , Babesia bovis/imunologia , Babesiose/parasitologia , Bovinos , Antílopes/parasitologia , Doenças dos Bovinos/parasitologia , Eritrócitos/parasitologia , Texas , Virulência , Rhipicephalus/parasitologia , Feminino , Reação em Cadeia da Polimerase
4.
Parasit Vectors ; 16(1): 274, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563668

RESUMO

Bovine babesiosis, caused by different Babesia spp. such as B. bovis, B. bigemina, B. divergens, and B. major, is a global disease that poses a serious threat to livestock production. Babesia bovis infections are associated with severe disease and increased mortality in adult cattle, making it the most virulent agent of bovine babesiosis. Babesia bovis parasites undergo asexual reproduction within bovine red blood cells, followed by sexual reproduction within their tick vectors, which transmit the parasite transovarially. Current control methods, including therapeutic drugs (i.e., imidocarb) have been found to lead to drug resistance. Moreover, changing environmental factors add complexity to efficient parasite control. Understanding the fundamental biology, host immune responses, and host-parasite interactions of Babesia parasites is critical for developing next-generation vaccines to control acute disease and parasite transmission. This systematic review analyzed available research papers on vaccine development and the associated immune responses to B. bovis. We compiled and consolidated the reported vaccine strategies, considering the study design and rationale of each study, to provide a systematic review of knowledge and insights for further research. Thirteen studies published since 2014 (inclusive) represented various vaccine strategies developed against B. bovis such as subunit, live attenuated, and viral vector vaccines. Such strategies incorporated B. bovis proteins or whole live parasites with the latter providing the most effective prophylaxis against bovine babesiosis. Incorporating novel research approaches, such as "omics" will enhance our understanding of parasite vulnerabilities.


Assuntos
Babesia bovis , Babesia , Babesiose , Doenças dos Bovinos , Vacinas , Animais , Bovinos , Babesiose/parasitologia , Doenças dos Bovinos/parasitologia
5.
Front Immunol ; 14: 1219913, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583702

RESUMO

Introduction: Live in vivo attenuated Babesia bovis vaccines produced by sequential passages in splenectomized calves have historically been used to control acute bovine babesiosis in endemic areas worldwide. However, several constraints prevent the widespread use of these vaccines, including the need for several splenectomized calves to produce vaccine batches, and potential inconsistent parasite attenuation, which contraindicates their use for highly Babesia-susceptible adult cattle. Thus, the use of vaccines based on well-defined in vitro culture attenuated B. bovis strains emerges as a more sustainable and efficient alternative. Previous work demonstrated that the culture attenuated strain Att-S74-T3Bo is non-tick transmissible and able to safely protect calves against needle challenge with a B. bovis virulent strain. Methods and results: Herein we evaluated safety and efficacy of Att-S74-T3Bo in preventing acute babesiosis in adult (>1.5 year of age) cattle. Results demonstrated that Att-S74-T3Bo vaccination of adult animals (n=5) induced self-limiting signs of acute infection and protected the vaccinated animals against challenge with the homologous virulent B. bovis strain Vir-S74-T3Bo. Att-S74-T3Bo-vaccinated adult cattle developed significant (P<0.05) monocytosis, with concomitant neutropenia and CD4+ leukopenia, in peripheral blood early after vaccination. Also, vaccinated animals developed a specific signature of pro- and anti-inflammatory cytokine expression in peripheral blood and significant levels of IgM, total IgG, IgG1, and IgG2 against the B. bovis immunodominant antigen RAP-1 CT. Strikingly, none of the vaccinated animals showed any signs of acute babesiosis after challenge with Vir-S74-T3Bo. In contrast, control adult cattle (n=5) showed pathognomonic symptoms of acute babesiosis, and significant decrease (P<0.05) in lymphocytes, monocytes, and neutrophils, starting on day 7 post-challenge. All control animals developed severe acute disease and were euthanized on days 10 through 12 days post-challenge. Discussion and conclusion: Evidence from this study indicates that Att-S74-T3Bo safely protects highly susceptible adult cattle against challenge with a homologous virulent strain of B. bovis. In conclusion, Att-S74-T3Bo may be considered as a potential efficient and sustainable attenuated candidate vaccine strain to control acute bovine babesiosis in highly susceptible adult cattle. Future studies should focus on increasing the number of animals vaccinated, duration of immunity, and efficacy of this attenuated strain against heterologous virulent parasite strains.


Assuntos
Babesia bovis , Babesia , Babesiose , Doenças dos Bovinos , Bovinos , Animais , Babesiose/parasitologia , Vacinação/métodos , Imunoglobulina G , Vacinas Atenuadas
6.
Res Vet Sci ; 156: 7-13, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36731184

RESUMO

This study examined 400 tick-infested cattle from the following four governorates in Egypt: Faiyum, Beni Suef, Giza, and Minya. These cattle were examined for blood parasites between January 2021 and April 2022. The infected cattle were classified into four groups based on tick infestations and clinical signs. Blood was drawn for assessing oxidative stress markers as well as for parasitological examination and molecular analysis of the 18S rRNA gene of Babesia bigemina (B. bigemina). We performed a comparison of the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) between B. bigemina-infected blood samples and non-infected blood samples used as negative controls. Babesia spp. infection increases hemolysis, which in turn increases oxidative stress marker levels and cell-mediated immune response.


Assuntos
Babesia , Babesiose , Doenças dos Bovinos , Carrapatos , Bovinos , Animais , Babesia/genética , Virulência , Doenças dos Bovinos/diagnóstico , Babesiose/diagnóstico , Babesiose/parasitologia
7.
Pathogens ; 12(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36839509

RESUMO

Babesia bovis and Theileria annulata are tick-borne hemoprotozoans that impact bovine health and are responsible for considerable fatalities in tropical and subtropical regions around the world. Both pathogens infect the same vertebrate host, are closely related, and contain similar-sized genomes; however, they differ in invertebrate host specificity, absence vs. presence of a schizont stage, erythrocyte invasion mechanism, and transovarial vs. transstadial transmission. Phylogenetic analysis and bidirectional best hit (BBH) identified a similar number of aspartic, metallo, and threonine proteinases and nonproteinase homologs. In contrast, a considerably increased number of S54 serine rhomboid proteinases and S9 nonproteinase homologs were identified in B. bovis, whereas C1A cysteine proteinases and A1 aspartic nonproteinase homologs were found to be expanded in T. annulata. Furthermore, a single proteinase of families S8 (subtilisin-like protein) and C12 (ubiquitin carboxyl-terminal hydrolase), as well as four nonproteinase homologs, one with dual domains M23-M23 and three with S9-S9, were exclusively present in B. bovis. Finally, a pronounced difference in species-specific ancillary domains was observed between both species. We hypothesize that the observed degradome differences represent functional correlates of the dissimilar life history features of B. bovis and T. annulata. The presented improved classification of piroplasmid proteinases will facilitate an informed choice for future in-depth functional studies.

8.
Front Immunol ; 13: 1045608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466866

RESUMO

The apicomplexan tickborne parasites Babesia bovis and B. bigemina are the major causative agents of bovine babesiosis, a disease that negatively affects the cattle industry and food safety around the world. The absence of correlates of protection represents one major impediment for the development of effective and sustainable vaccines against bovine babesiosis. Herein we superinfected cattle with attenuated and virulent strains of B. bovis to investigate immune correlates of protection against acute bovine babesiosis. Three 6-month-old Holstein calves were infected intravenously (IV) with the in vitro culture attenuated Att-S74-T3Bo B. bovis strain (106 infected bovine red blood cells (iRBC)/calf) while three age-matched Holstein calves were inoculated IV with normal RBC as controls (106 RBC/calf). All Att-S74-T3Bo-infected calves showed a significant increase in temperature early after inoculation but recovered without treatment. Att-S74-T3Bo-infected calves also developed: (a) monocytosis, neutropenia, and CD4+ lymphopenia in peripheral blood on days 3 to 7 post-inoculation; (b) significant levels of TNFα, CXCL10, IFNγ, IL-4, and IL-10 in sera at day 6 after infection; and (c) IgM and IgG against B. bovis antigens, starting at days 10 and 30 post-inoculation, respectively. At 46 days post-Att-S74-T3Bo inoculation, all experimental calves were infected IV with the homologous virulent B. bovis strain Vir-S74-T3Bo (107 iRBC/calf). All Att-S74-T3Bo-infected calves survived superinfection with Vir-S74-T3Bo without displaying signs of acute babesiosis. In contrast, control animals showed signs of acute disease, starting at day 10 post-Vir-S74-T3Bo infection, and two of them were humanely euthanized at days 13 and 14 after inoculation due to the severity of their symptoms. Also, control calves showed higher (P<0.05) parasite load in peripheral blood compared to animals previously exposed to Att-S74-T3Bo. No significant alterations in the profile of leukocytes and cytokines were observed in Att-S74-T3Bo-inoculated after Vir-S74-T3Bo infection. In conclusion, data demonstrate novel changes in the profile of blood immune cells and cytokine expression in peripheral blood that are associated with protection against acute bovine babesiosis. These identified immune correlates of protection may be useful for designing effective and sustainable vaccines against babesiosis in cattle.


Assuntos
Babesia bovis , Babesiose , Antígenos de Grupos Sanguíneos , Neutropenia , Bovinos , Animais , Babesiose/prevenção & controle , Vacinação , Citocinas
9.
Exp Parasitol ; 239: 108318, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35779644

RESUMO

Bovine babesiosis is a serious threat to the livestock sector especially in tropical countries like India. Understanding the epidemiology of the disease in the country is essentially important in strategizing the available methods to effectively control the disease. Keeping this as the background, the present study was undertaken to estimate the pooled prevalence of bovine babesiosis in India. The relevant literature pertaining to bovine babesiosis was identified and a total of 49 studies published between 1983 and 2018 were included in the final systematic review and meta-analysis. Meta-analysis was conducted using meta-package of R software and prevalence estimates were calculated. Bovine babesiosis was reported from 21 states of India with pooled prevalence estimate of 6% (95% CI = 4%-9%) using random effect model. Zone wise analysis revealed highest pooled prevalence in the west zone and north zone (8%) followed by east zone (7%), central zone (6%), south zone (4%) and northeast zone (4%). The results of meta-analysis indicated high variability between studies. In addition, the pooled seroprevalence was high (29%) compared to prevalence of active infection (5%) of bovine babesiosis in India. Further, the pooled prevalence estimate of B. bigemina infection in India was more (7%) compared to B. bovis infection (1%). The estimation of prevalence of active infection and seroprevalence separately will helps to understand the actual disease prevalence in the country. The study indicated the wide prevalence of bovine babesiosis in India which urges for immediate mitigation strategies.


Assuntos
Babesiose , Doenças dos Bovinos , Animais , Babesiose/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Índia/epidemiologia , Prevalência , Estudos Soroepidemiológicos
10.
Vet Parasitol ; 304: 109686, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35279616

RESUMO

Babesia bovis and B. bigemina are tick-transmitted parasites causing bovine babesiosis, characterized by significant morbidity and mortality leading to economic losses to the livestock industry in tropical and subtropical regions worldwide. Animals that recover from acute infection remain carriers with low parasitemia acting as a source of transmission, and often escape detection. An improved diagnosis of a B. bovis and/or B. bigemina infection of carrier animals is enabled by the availability of detection methods with high sensitivity. To this end, two nested PCR assays targeting the cytochrome b (cytb) genes of B. bovis and B. bigemina (cytb-nPCR), have been recently developed and an increased sensitivity with respect to reference protocols has been shown (Romero-Salas et al., 2016). In this study, the specificity against a panel of hemoparasites that potentially co-occur with B. bovis and B. bigemina was demonstrated to ensure applicability of the cytb-nPCR assays in a wide range of regions where bovine babesiosis is endemic. Furthermore, we compared both reported cytb-nPCR assays with reference nPCR and qPCR protocols for (i) their capability to detect carrier animals in the field, and (ii) their reproducibility when performed in different laboratories by independent operators. We show that, in a panel of bovine field samples (n = 100), the cytb-nPCR assays detected a considerably higher number of 25% B. bovis and 61% B. bigemina-positive animals compared to 7% and 20% B. bovis and 55% and 49% B. bigemina-positive animals when tested by reference nPCR and qPCR protocols, respectively. Cytb-nPCRs were also found superior in the detection of carrier animals when field samples from Africa were analyzed. In addition, both the B. bovis and B. bigemina cytb-nPCR assays were independently validated in a single blinded study in three laboratories. Importantly, no significant differences in the number/percentage of infected animals was observed using cytb-nPCR assays. In summary, the cytb-nPCR assays detected a considerably higher number of chronically infected B. bovis and B. bigemina carrier animals compared to reference nPCR and qPCR protocols, when applied in different epidemiological field situations. Furthermore, a high reproducibility between laboratories could be demonstrated.


Assuntos
Babesia bovis , Babesia , Babesiose , Doenças dos Bovinos , Carrapatos , Animais , Babesia/genética , Babesia bovis/genética , Babesiose/parasitologia , Bovinos , Doenças dos Bovinos/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reprodutibilidade dos Testes , Carrapatos/genética
11.
Front Vet Sci ; 9: 833183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242841

RESUMO

Bovine babesiosis, caused by Babesia bovis, is an economically significant tick-borne disease that imposes restrictions to livestock production worldwide. Current methods to control bovine babesiosis have severe limitations and novel approaches, including transmission-blocking vaccines, are needed. Members of the widely conserved CCp family are multidomain adhesion proteins containing LCCL motifs, which are differentially expressed on gametocytes of apicomplexans, including Babesia spp. and Plasmodium spp. While Plasmodium parasites contain 6 distinct CCp genes, only three members (CCp 1-3) were previously identified in B. bovis. In this study, we describe the identification and characterization of two novel non-canonical members of the CCp gene family in B. bovis, named CCp5 and FNPA. The genes were identified in silico by TBLASTN using P. falciparum CCp family domains as queries. Unlike CCp1-3, the B. bovis CCp5 and FNPA proteins lack the LCCL canonical domain but contain other typical multidomain adhesion motifs which are present in classical CCp proteins. In addition, the B. bovis CCp5 and FNPA are in synteny with known CCp genes in related apicomplexans. Sequence analysis of these two proteins demonstrated high sequence conservation among B. bovis different isolates. Transcription, immunoblot, and immunofluorescence analyses demonstrated expression of CCp5 and FNPA in blood and in vitro induced sexual stages of B. bovis. The FNPA, in contrast to CCp5, has a predicted transmembrane domain, suggesting that it might be expressed in the surface of sexual stage parasites. Altogether, finding of this study support FNPA as a possible target of a transmission-blocking vaccine against B. bovis.

12.
Pathogens ; 11(3)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35335668

RESUMO

Babesia bovis, a tick-transmitted apicomplexan protozoon, infects cattle in tropical and subtropical regions around the world. In the apicomplexans Toxoplasma gondii and Plasmodium falciparum, rhomboid serine protease 4 (ROM4) fulfills an essential role in host cell invasion. We thus investigated B. bovis ROM4 coding genes; their genomic organization; their expression in in vitro cultured asexual (AS) and sexual stages (SS); and strain polymorphisms. B. bovis contains five rom4 paralogous genes in chromosome 2, which we have named rom4.1, 4.2, 4.3, 4.4 and 4.5. There are moderate degrees of sequence identity between them, except for rom4.3 and 4.4, which are almost identical. RT-qPCR analysis showed that rom4.1 and rom4.3/4.4, respectively, display 18-fold and 218-fold significantly higher (p < 0.01) levels of transcription in SS than in AS, suggesting a role in gametogenesis-related processes. In contrast, transcription of rom4.4 and 4.5 differed non-significantly between the stages. ROM4 polymorphisms among geographic isolates were essentially restricted to the number of tandem repeats of a 29-amino acid sequence in ROM4.5. This sequence repeat is highly conserved and predicted as antigenic. B. bovis ROMs likely participate in relevant host−pathogen interactions and are possibly useful targets for the development of new control strategies against this pathogen.

13.
Vaccines (Basel) ; 10(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062784

RESUMO

Babesiosis is a disease caused by tickborne hemoprotozoan apicomplexan parasites of the genus Babesia that negatively impacts public health and food security worldwide. Development of effective and sustainable vaccines against babesiosis is currently hindered in part by the absence of definitive host correlates of protection. Despite that, studies in Babesia microti and Babesia bovis, major causative agents of human and bovine babesiosis, respectively, suggest that early activation of innate immune responses is crucial for vertebrates to survive acute infection. Trained immunity (TI) is defined as the development of memory in vertebrate innate immune cells, allowing more efficient responses to subsequent specific and non-specific challenges. Considering that Mycobacterium bovis bacillus Calmette-Guerin (BCG), a widely used anti-tuberculosis attenuated vaccine, induces strong TI pro-inflammatory responses, we hypothesize that BCG TI may protect vertebrates against acute babesiosis. This premise is supported by early investigations demonstrating that BCG inoculation protects mice against experimental B. microti infection and recent observations that BCG vaccination decreases the severity of malaria in children infected with Plasmodium falciparum, a Babesia-related parasite. We also discuss the potential use of TI in conjunction with recombinant BCG vaccines expressing Babesia immunogens. In conclusion, by concentrating on human and bovine babesiosis, herein we intend to raise awareness of BCG TI as a strategy to efficiently control Babesia infection.

14.
Front Cell Infect Microbiol ; 12: 1093338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601308

RESUMO

Bovine babesiosis caused by Babesia bigemina and Babesia bovis is an economically important disease that affects cattle worldwide. Both B. bigemina and B. bovis are transovarially transmitted by Rhipicephalus ticks. However, little is known regarding parasite gene expression during infection of the tick vector or mammalian host, which has limited the development of effective control strategies to alleviate the losses to the cattle industry. To understand Babesia gene regulation during tick and mammalian host infection, we performed high throughput RNA-sequencing using samples collected from calves and Rhipicephalus microplus ticks infected with B. bigemina. We evaluated gene expression between B. bigemina blood-stages and kinetes and compared them with previous B. bovis RNA-seq data. The results revealed similar patterns of gene regulation between these two tick-borne transovarially transmitted Babesia parasites. Like B. bovis, the transcription of several B. bigemina genes in kinetes exceeded a 1,000-fold change while a few of these genes had a >20,000-fold increase. To identify genes that may have important roles in B. bigemina and B. bovis transovarial transmission, we searched for genes upregulated in B. bigemina kinetes in the genomic datasets of B. bovis and non-transovarially transmitted parasites, Theileria spp. and Babesia microti. Using this approach, we identify genes that may be potential markers for transovarial transmission by B. bigemina and B. bovis. The findings presented herein demonstrate common Babesia genes linked to infection of the vector or mammalian host and may contribute to elucidating strategies used by the parasite to complete their life cycle.


Assuntos
Babesia bovis , Babesia , Doenças dos Bovinos , Rhipicephalus , Animais , Bovinos , Babesia/genética , Babesia bovis/genética , Sequência de Bases , Estágios do Ciclo de Vida/genética , Rhipicephalus/genética , Vertebrados , Expressão Gênica , Doenças dos Bovinos/genética , Mamíferos/genética
15.
Animals (Basel) ; 11(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34944137

RESUMO

The indirect fluorescent antibody test (IFAT) is the most frequently used test to conduct seroepidemiological studies so far, and it is regarded as the "gold standard" test for the serological diagnosis of bovine babesiosis. The aim of the present study was to compare the enzyme-linked immunosorbent assay (ELISA) and the rapid immunochromatography test (ICT) for use in the serological diagnosis of cattle exposed to B. bovis in Mexico. The evaluation of test performance was carried out with 30 positive and 30 negative reference sera. A total of 72 bovine sera samples collected from cattle in a region with endemic bovine babesiosis were analyzed by ELISA and ICT, and the results were compared with those of IFAT. Kappa value (k) was also calculated to determine the agreement between tests. The sensitivity and specificity of ELISA for detecting antibodies against B. bovis were 87% (26/30) and 80% (24/30), respectively. The sensitivity and specificity of ICT for detecting antibodies against B. bovis were 90% (27/30) and 83.3% (25/30), respectively. The overall concordance determined for ELISA and ICT was 94.4% (68/72) and 98.6% (71/72), respectively, when the results were compared with those of IFAT. ICT was more sensitive and specific in this comparative study, showing good strength of agreement (k = 0.79) with respect to IFAT. ICT combines a strip-based assay system that is fast, practical, and sensitive for detection of antibodies to B. bovis, which suggests that it could be applied in the field without requiring any laboratory equipment for its use and interpretation of test results.

16.
Parasit Vectors ; 14(1): 460, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493328

RESUMO

Babesiosis is a tick-borne disease with global impact caused by parasites of the phylum Apicomplexa, genus Babesia. Typically, acute bovine babesiosis (BB) is characterized by fever, anemia, hemoglobinuria, and high mortality. Surviving animals remain persistently infected and become reservoirs for parasite transmission. Bovids in China can be infected by one or more Babesia species endemic to the country, including B. bovis, B. bigemina, B. orientalis, B. ovata, B. major, B. motasi, B. U sp. Kashi and B. venatorum. The latter may pose a zoonotic risk. Occurrence of this wide diversity of Babesia species in China may be due to a combination of favorable ecological factors, such as the presence of multiple tick vectors, including Rhipicephalus and Hyalomma, the coexistence of susceptible bovid species, such as domestic cattle, yaks, and water buffalo, and the lack of efficient measures of tick control. BB is currently widespread in several regions of the country and a limiting factor for cattle production. While some areas appear to have enzootic stability, others have considerable cattle mortality. Research is needed to devise solutions to the challenges posed by uncontrolled BB. Critical research gaps include risk assessment for cattle residing in endemic areas, understanding factors involved in endemic stability, evaluation of parasite diversity and pathogenicity of regional Babesia species, and estimation of whether and how BB should be controlled in China. Research should allow the design of comprehensive interventions to improve cattle production, diminish the risk of human infections, and increase the availability of affordable animal protein for human consumption in China and worldwide. In this review, we describe the current state of BB with reference to the diversity of hosts, vectors, and parasite species in China. We also discuss the unique risks and knowledge gaps that should be taken into consideration for future Babesia research and control strategies.


Assuntos
Babesiose/epidemiologia , Doenças dos Bovinos/parasitologia , Rhipicephalus/parasitologia , Doenças Transmitidas por Carrapatos/prevenção & controle , Animais , Babesia bovis/isolamento & purificação , Babesia bovis/patogenicidade , Babesiose/transmissão , Búfalos/parasitologia , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão , China/epidemiologia , DNA de Protozoário/genética , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/parasitologia
17.
Ticks Tick Borne Dis ; 12(5): 101708, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34175736

RESUMO

Cattle fever ticks, Rhipicephalus microplus and R. annulatus have been eradicated from the United States and inspectors from the U.S. Department of Agriculture (USDA), Animal Plant Health Inspection Service (APHIS), Cattle Fever Tick Eradication Program (CFTEP) monitor the quarantine zone along the Texas border to prevent the introduction of livestock carrying cattle fever ticks from Mexico. Stray livestock apprehended by CFTEP in the zone are checked for ticks and tested for infectious disease-causing pathogens but are not evaluated for evidence of infection with tick-borne pathogens. We tested blood samples collected from stray cattle by CFTEP inspectors for evidence of infection with tick-borne pathogens. As a comparison group representing U.S. resident cattle, we tested blood samples that had been sent to the Texas A&M Veterinary Medical Diagnostic Laboratory (TVMDL) for unrelated testing. Both sets of blood samples were evaluated using the same specific and broad-spectrum PCR assays. For the border cattle the overall prevalence of infection with one or more tick-borne pathogen was 58.5 % (79/135) with many co-infections, including 30 cattle positive for Babesia bovis and/or Babesia bigemina (22.2 %) and 77 cattle positive for Anaplasma marginale (57 %), three of these animals were also positive for Borrelia theileri. No resident cattle represented by the TVMDL samples were infected with either of the Babesia spp., or with Borrelia theileri, but three were positive for Theileria orientalis and 7.3 % (7/96) were positive for A. marginale. These data show that cattle originating in Mexico have a higher prevalence of infection with tick-borne pathogens relative to resident U.S. cattle and specifically, a proportion are infected with bovine Babesia, which is absent from U.S. cattle populations. Consequently, these stray cattle may be a reservoir of tick-borne pathogens and if populations of Boophilus ticks become reestablished in areas where they had previously been eradicated, could pose a significant risk to the U.S. Cattle industry.


Assuntos
Anaplasmose/epidemiologia , Babesiose , Doenças dos Bovinos/epidemiologia , Coccidiose/veterinária , Doenças Transmitidas por Carrapatos/epidemiologia , Anaplasma/isolamento & purificação , Anaplasma marginale/isolamento & purificação , Animais , Vetores Aracnídeos/microbiologia , Vetores Aracnídeos/parasitologia , Babesia/isolamento & purificação , Babesiose/epidemiologia , Borrelia/isolamento & purificação , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/parasitologia , Coccidiose/epidemiologia , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/parasitologia , Vetores de Doenças , México , Reação em Cadeia da Polimerase/veterinária , Infecções Protozoárias em Animais/epidemiologia , Rhipicephalus/microbiologia , Rhipicephalus/parasitologia , Texas , Theileria/isolamento & purificação , Theileriose/epidemiologia
18.
Ticks Tick Borne Dis ; 12(4): 101713, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827035

RESUMO

Babesia bovis is a known causative agent of bovine babesiosis and is widely distributed across China. Rapid detection and accurate identification of B. bovis is essential for follow-up management and epidemiological investigations. In this study, a cross-priming amplification combined with vertical flow (CPA-VF) assay was developed. The detection limit of the CPA-VF assay targeting the 18S rRNA gene was 320 fg per reaction at 61 °C for 60 min. No cross-reactions were observed with other piroplasms infective to cattle. Furthermore, 36 blood samples from experimentally-infected animals were accurately assessed using the CPA-VF assay. The performance of the CPA-VF assay was compared with the results of conventional PCR for 219 blood samples from the field. Our results demonstrate that the CPA-VF assay is a practical and effective diagnostic tool for bovine babesiosis caused by B. bovis infection.


Assuntos
Babesia bovis/isolamento & purificação , Babesiose/diagnóstico , Doenças dos Bovinos/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/veterinária , Animais , Babesiose/parasitologia , Bovinos , Doenças dos Bovinos/parasitologia , Apresentação Cruzada , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Sensibilidade e Especificidade
19.
Int J Parasitol ; 51(2-3): 123-136, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33069745

RESUMO

Throughout their life cycle, Babesia parasites alternate between a mammalian host, where they cause babesiosis, and the tick vector. Transition between hosts results in distinct environmental signals that influence patterns of gene expression, consistent with the morphological and functional changes operating in the parasites during their life stages. In addition, comparing differential patterns of gene expression among mammalian and tick parasite stages can provide clues for developing improved methods of control. Hereby, we upgraded the genome assembly of Babesia bovis, a bovine hemoparasite, closing a 139 kbp gap, and used RNA-Seq datasets derived from mammalian blood and tick kinete stages to update the genome annotation. Of the originally annotated genes, 1,254 required structural changes, and 326 new genes were identified, leading to a different predicted proteome compared to the original annotation. Next, the RNA-Seq data was used to identify B. bovis genes that were differentially expressed in the vertebrate and arthropod hosts. In blood stages, 28% of the genes were upregulated up to 300 fold, whereas 26% of the genes in kinetes, a tick stage, were upregulated up to >19,000 fold. We thus discovered differentially expressed genes that may play key biological roles and serve as suitable targets for the development of vaccines to control bovine babesiosis.


Assuntos
Babesia bovis , Babesia , Babesiose , Doenças dos Bovinos , Animais , Babesia/genética , Babesia bovis/genética , Bovinos , Expressão Gênica , Estágios do Ciclo de Vida
20.
Parasit Vectors ; 13(1): 606, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33272316

RESUMO

BACKGROUND: The most common apicomplexan parasites causing bovine babesiosis are Babesia bovis and B. bigemina, while B. caballi and Theileria equi are responsible for equine piroplasmosis. Treatment and control of these diseases are usually achieved using potentially toxic chemotherapeutics, such as imidocarb diproprionate, but drug-resistant parasites are emerging, and alternative effective and safer drugs are needed. The endochin-like quinolones (ELQ)-300 and ELQ-316 have been proven to be safe and efficacious against related apicomplexans, such as Plasmodium spp., with ELQ-316 also being effective against Babesia microti, without showing toxicity in mammals. METHODS: The inhibitory effects of ELQ-300 and ELQ-316 were assessed on the growth of cultured B. bovis, B. bigemina, B. caballi and T. equi. The percentage of parasitized erythrocytes was measured by flow cytometry, and the effect of the ELQ compounds on the viability of horse and bovine peripheral blood mononuclear cells (PBMC) was assessed by monitoring cell metabolic activity using a colorimetric assay. RESULTS: We calculated the half maximal inhibitory concentration (IC50) at 72 h, which ranged from 0.04 to 0.37 nM for ELQ-300, and from 0.002 to 0.1 nM for ELQ-316 among all cultured parasites tested at 72 h. None of the parasites tested were able to replicate in cultures in the presence of ELQ-300 and ELQ-316 at the maximal inhibitory concentration (IC100), which ranged from 1.3 to 5.7 nM for ELQ-300 and from 1.0 to 6.0 nM for ELQ-316 at 72 h. Neither ELQ-300 nor ELQ-316 altered the viability of equine and bovine PBMC at their IC100 in in vitro testing. CONCLUSIONS: The compounds ELQ-300 and ELQ-316 showed significant inhibitory activity on the main parasites responsible for bovine babesiosis and equine piroplasmosis at doses that are tolerable to host cells. These ELQ drugs may be viable candidates for developing alternative protocols for the treatment of bovine babesiosis and equine piroplasmosis.


Assuntos
Antiprotozoários/farmacologia , Babesia/efeitos dos fármacos , Babesiose/parasitologia , Doenças dos Cavalos/parasitologia , Quinolonas/farmacologia , Theileria/efeitos dos fármacos , Theileriose/parasitologia , Animais , Babesia/crescimento & desenvolvimento , Babesia/fisiologia , Babesiose/tratamento farmacológico , Eritrócitos/parasitologia , Doenças dos Cavalos/tratamento farmacológico , Cavalos , Leucócitos Mononucleares/parasitologia , Theileria/crescimento & desenvolvimento , Theileria/fisiologia , Theileriose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA