Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell Rep ; 43(3): 113871, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38451816

RESUMO

We examined the distribution of pre-synaptic contacts in axons of mouse neurons and constructed whole-brain single-cell neuronal networks using an extensive dataset of 1,891 fully reconstructed neurons. We found that bouton locations were not homogeneous throughout the axon and among brain regions. As our algorithm was able to generate whole-brain single-cell connectivity matrices from full morphology reconstruction datasets, we further found that non-homogeneous bouton locations have a significant impact on network wiring, including degree distribution, triad census, and community structure. By perturbing neuronal morphology, we further explored the link between anatomical details and network topology. In our in silico exploration, we found that dendritic and axonal tree span would have the greatest impact on network wiring, followed by synaptic contact deletion. Our results suggest that neuroanatomical details must be carefully addressed in studies of whole-brain networks at the single-cell level.


Assuntos
Axônios , Neurônios , Animais , Camundongos , Axônios/fisiologia , Encéfalo , Terminações Pré-Sinápticas
2.
J Addict Psychiatry ; 7(1): 5-516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164471

RESUMO

In the USA alone, opioid use disorder (OUD) affects approximately 27 million people. While the number of prescriptions may be declining due to increased CDC guidance and prescriber education, fatalities due to fentanyl-laced street heroin are still rising. Our laboratory has extended the overall concept of both substance and non-substance addictive behaviors, calling it "Reward Deficiency Syndrome (RDS)." Who are its victims, and how do we get this unwanted disorder? Is RDS caused by genes (Nature), environment (Neuro-epigenetics, Nurture), or both? Recent research identifies resting-state functional connectivity in the brain reward circuitry as a crucial factor. Analogously, it is of importance to acknowledge that the cumulative discharge of dopamine, governed by the nucleus accumbens (NAc) and modulated by an array of additional neurotransmitters, constitutes a cornerstone of an individual's overall well-being. Neuroimaging reveals that high-risk individuals exhibit a blunted response to stimuli, potentially due to DNA polymorphisms or epigenetic alterations. This discovery has given rise to the idea of a diminished 'thrill,' though we must consider whether this 'thrill' may have been absent from birth due to high-risk genetic predispositions for addiction. This article reviews this issue and suggests the general concept of the importance of "induction of dopamine homeostasis." We suggest coupling a validated genetic assessment (e.g., GARS) with pro-dopamine regulation (KB220) as one possible frontline modality in place of prescribing potent addictive opioids for OUD except for short time harm reduction. Could gene editing offer a 'cure' for this undesirable genetic modification at birth, influenced by the environment and carried over generations, leading to impaired dopamine and other neurotransmitter imbalances, as seen in RDS? Through dedicated global scientific exploration, we hope for a future where individuals are liberated from pain and disease, achieving an optimal state of well-being akin to the proverbial 'Garden of Eden'.

3.
Exp Brain Res ; 240(12): 3327-3337, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36322165

RESUMO

Schizophrenia (SCZ) can be described as a functional dysconnectivity syndrome that affects brain connectivity and circuitry. However, little is known about how sensory stimulation modulates network parameters in schizophrenia, such as their small-worldness (SW) during visual processing. To address this question, we applied graph theory algorithms to multi-electrode EEG recordings obtained during visual stimulation with a checkerboard pattern-reversal stimulus. Twenty-six volunteers participated in the study, 13 diagnosed with schizophrenia (SCZ; mean age = 38.3 years; SD = 9.61 years) and 13 healthy controls (HC; mean age = 28.92 years; SD = 12.92 years). The visually evoked potential (VEP) showed a global amplitude decrease (p < 0.05) for SCZ patients as opposed to HC but no differences in latency (p > 0.05). As a signature of functional connectivity, graph measures were obtained from the Magnitude-Squared Coherence between signals from pairs of occipital electrodes, separately for the alpha (8-13 Hz) and low-gamma (36-55 Hz) bands. For the alpha band, there was a significant effect of the visual stimulus on all measures (p < 0.05) but no group interaction between SCZ and HZ (p > 0.05). For the low-gamma spectrum, both groups showed a decrease of Characteristic Path Length (L) during visual stimulation (p < 0.05), but, contrary to the HC group, only SCZ significantly lowered their small-world (SW) connectivity index during visual stimulation (SCZ p < 0.05; HC p > 0.05). This indicates dysconnectivity of the functional network in the low-gamma band of SCZ during stimulation, which might indirectly reflect an altered ability to react to new sensory input in patients. These results provide novel evidence about a possible electrophysiological signature of the global deficits revealed by the application of graph theory onto electroencephalography in schizophrenia.


Assuntos
Mapeamento Encefálico , Eletroencefalografia , Vias Neurais , Estimulação Luminosa , Esquizofrenia , Adulto , Humanos , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico , Esquizofrenia/fisiopatologia , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Potenciais Evocados Visuais , Vias Neurais/fisiopatologia
4.
Obes Rev ; 23(3): e13392, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34845821

RESUMO

In this paper, we present a transdisciplinary framework and testable hypotheses regarding the process of fetal programming of energy homeostasis brain circuitry. Our model proposes that key aspects of energy homeostasis brain circuitry already are functional by the time of birth (with substantial interindividual variation); that this phenotypic variation at birth is an important determinant of subsequent susceptibility for energy imbalance and childhood obesity risk; and that this brain circuitry exhibits developmental plasticity, in that it is influenced by conditions during intrauterine life, particularly maternal-placental-fetal endocrine, immune/inflammatory, and metabolic processes and their upstream determinants. We review evidence that supports the scientific premise for each element of this formulation, identify future research directions, particularly recent advances that may facilitate a better quantification of the ontogeny of energy homeostasis brain networks, highlight animal and in vitro-based approaches that may better address the determinants of interindividual variation in energy homeostasis brain networks, and discuss the implications of this formulation for the development of strategies targeted towards the primary prevention of childhood obesity.


Assuntos
Obesidade Infantil , Efeitos Tardios da Exposição Pré-Natal , Animais , Encéfalo , Criança , Feminino , Desenvolvimento Fetal , Homeostase , Humanos , Obesidade Infantil/metabolismo , Obesidade Infantil/prevenção & controle , Placenta/metabolismo , Gravidez
5.
Addict Biol ; 26(2): e12936, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32638485

RESUMO

Addiction is defined as the repeated exposure and compulsive seek of psychotropic drugs that, despite the harmful effects, generate relapse after the abstinence period. The psychophysiological processes associated with drug addiction (acquisition/expression, withdrawal, and relapse) imply important alterations in neurotransmission and changes in presynaptic and postsynaptic plasticity and cellular structure (neuroadaptations) in neurons of the reward circuits (dopaminergic neuronal activity) and other corticolimbic regions. These neuroadaptation mechanisms imply important changes in neuronal energy balance and protein synthesis machinery. Scientific literature links drug-induced stimulation of dopaminergic and glutamatergic pathways along with presence of neurotrophic factors with alterations in synaptic plasticity and membrane excitability driven by metabolic sensors. Here, we provide current knowledge of the role of molecular targets that constitute true metabolic/energy sensors such as AMPK, mTOR, ERK, or KATP in the development of the different phases of addiction standing out the main brain regions (ventral tegmental area, nucleus accumbens, hippocampus, and amygdala) constituting the hubs in the development of addiction. Because the available treatments show very limited effectiveness, evaluating the drug efficacy of AMPK and mTOR specific modulators opens up the possibility of testing novel pharmacotherapies for an individualized approach in drug abuse.


Assuntos
Encéfalo/patologia , Plasticidade Neuronal/fisiologia , Transtornos Relacionados ao Uso de Substâncias/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Ácido Glutâmico/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Motivação , Recompensa , Fatores Sociodemográficos , Serina-Treonina Quinases TOR/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Front Neurosci ; 13: 108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828289

RESUMO

The treatment of psychiatric patients presents significant challenges to the clinical community, and a multidisciplinary approach to diagnosis and management is essential to facilitate optimal care. In particular, the neurosurgical treatment of psychiatric disorders, or "psychosurgery," has held fascination throughout human history as a potential method of influencing behavior and consciousness. Early evidence of such procedures can be traced to prehistory, and interest flourished in the nineteenth and early twentieth century with greater insight into cerebral functional and anatomic localization. However, any discussion of psychosurgery invariably invokes controversy, as the widespread and indiscriminate use of the transorbital lobotomy in the mid-twentieth century resulted in profound ethical ramifications that persist to this day. The concurrent development of effective psychopharmacological treatments virtually eliminated the need and desire for psychosurgical procedures, and accordingly the research and practice of psychosurgery was dormant, but not forgotten. There has been a recent resurgence of interest for non-ablative therapies, due in part to modern advances in functional and structural neuroimaging and neuromodulation technology. In particular, deep brain stimulation is a promising treatment paradigm with the potential to modulate abnormal pathways and networks implicated in psychiatric disease states. Although there is enthusiasm regarding these recent advancements, it is important to reflect on the scientific, social, and ethical considerations of this controversial field.

7.
Psychiatry Res Neuroimaging ; 283: 67-76, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30554128

RESUMO

Human olfactory processing is understudied relative to other sensory modalities, despite its links to neurodevelopmental and neurodegenerative disorders. To address this limitation, we developed a fast, robust fMRI odor paradigm that is appropriate for all ages and levels of cognitive functioning. To test this approach, thirty-four typically developing children aged 7-12 underwent fMRI during brief, repeated exposure to phenylethyl alcohol, a flower-scented odor. Prior to fMRI scanning, olfactory testing (odor detection and identification) was conducted. During fMRI stimulus presentation, odorant release was synchronized to each participant's inspiratory phase to ensure participants were inhaling during the odorant exposure. Between group differences and correlations between activation and odor detection threshold scores were tested using the FMRIB Software Library. Results demonstrated that our 2-min paradigm significantly activated primary and secondary olfactory regions. In addition, a significant relationship between odor detection threshold and higher activation in the right amygdala and lower activation in the left frontal, insular, occipital, and cerebellar regions was observed, suggesting that this approach is sensitive to individual differences in olfactory processing. These findings demonstrate the feasibility of studying olfactory function in children using brain imaging techniques.


Assuntos
Desenvolvimento Infantil/fisiologia , Imageamento por Ressonância Magnética/métodos , Odorantes , Condutos Olfatórios/diagnóstico por imagem , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Administração por Inalação , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/efeitos dos fármacos , Cerebelo/diagnóstico por imagem , Cerebelo/efeitos dos fármacos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/efeitos dos fármacos , Criança , Desenvolvimento Infantil/efeitos dos fármacos , Feminino , Humanos , Masculino , Neuroimagem/métodos , Condutos Olfatórios/efeitos dos fármacos , Olfato/efeitos dos fármacos
8.
Front Neurosci ; 12: 998, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30670945

RESUMO

Obsessive compulsive disorder (OCD) is a common, disabling psychiatric disease characterized by persistent, intrusive thoughts and ritualistic, repetitive behaviors. Deep brain stimulation (DBS) is thought to alleviate OCD symptoms by modulating underlying disturbances in normal cortico-striato-thalamo-cortical (CSTC) circuitry. Stimulation of the ventral portion of the anterior limb of the internal capsule (ALIC) and underlying ventral striatum ("ventral capsule/ventral striatum" or "VC/VS" target) received U.S. FDA approval in 2009 for patients with severe, treatment-refractory OCD. Over the decades, DBS surgical outcome studies have led to an evolution in the electrical stimulation target. In parallel, advancements in neuroimaging techniques have allowed investigators to better visualize and define CSTC circuits underlying the pathophysiology of OCD. A critical analysis of these new data suggests that the therapeutic mechanism of DBS for OCD likely involves neuromodulation of a widespread cortical/subcortical network, accessible by targeting fiber bundles in the ventral ALIC that connect broad network regions. Future studies will include advances in structural and functional imaging, analysis of physiological recordings, and utilization of next-generation DBS devices. These tools will enable patient-specific optimization of DBS therapy, which will hopefully further improve outcomes.

9.
Pharmacol Ther ; 185: 64-85, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29191394

RESUMO

Patients who suffer from alcohol use disorders (AUDs) usually go through various socio-behavioral and pathophysiological changes that take place in the brain and other organs. Recently, consumption of unhealthy food and excess alcohol along with a sedentary lifestyle has become a norm in both developed and developing countries. Despite the beneficial effects of moderate alcohol consumption, chronic and/or excessive alcohol intake is reported to negatively affect the brain, liver and other organs, resulting in cell death, organ damage/failure and death. The most effective therapy for alcoholism and alcohol related comorbidities is alcohol abstinence, however, chronic alcoholic patients cannot stop drinking alcohol. Therefore, targeted therapies are urgently needed to treat such populations. Patients who suffer from alcoholism and/or alcohol abuse experience harmful effects and changes that occur in the brain and other organs. Upon stopping alcohol consumption, alcoholic patients experience acute withdrawal symptoms followed by a protracted abstinence syndrome resulting in the risk of relapse to heavy drinking. For the past few decades, several drugs have been available for the treatment of AUDs. These drugs include medications to reduce or stop severe alcohol withdrawal symptoms during alcohol detoxification as well as recovery medications to reduce alcohol craving and support abstinence. However, there is no drug that completely antagonizes the adverse effects of excessive amounts of alcohol. This review summarizes the drugs which are available and approved by the FDA and their mechanisms of action as well as the medications that are under various phases of preclinical and clinical trials. In addition, the repurposing of the FDA approved drugs, such as anticonvulsants, antipsychotics, antidepressants and other medications, to prevent alcoholism and treat AUDs and their potential target mechanisms are summarized.


Assuntos
Alcoolismo/tratamento farmacológico , Animais , Aprovação de Drogas , Reposicionamento de Medicamentos , Humanos , Transdução de Sinais , Estados Unidos , United States Food and Drug Administration
10.
Neurosci Lett ; 644: 100-106, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28242327

RESUMO

Artificial neural systems and nervous graph theoretical analysis rely upon the stance that the neural code is embodied in logic circuits, e.g., spatio-temporal sequences of ON/OFF spiking neurons. Nevertheless, this assumption does not fully explain complex brain functions. Here we show how nervous activity, other than logic circuits, could instead depend on topological transformations and symmetry constraints occurring at the micro-level of the cortical microcolumn, i.e., the embryological, anatomical and functional basic unit of the brain. Tubular microcolumns can be flattened in fullerene-like two-dimensional lattices, equipped with about 80 nodes standing for pyramidal neurons where neural computations take place. We show how the countless possible combinations of activated neurons embedded in the lattice resemble a barcode. Despite the fact that further experimental verification is required in order to validate our claim, different assemblies of firing neurons might have the appearance of diverse codes, each one responsible for a single mental activity. A two-dimensional fullerene-like lattice, grounded on simple topological changes standing for pyramidal neurons' activation, not just displays analogies with the real microcolumn's microcircuitry and the neural connectome, but also the potential for the manufacture of plastic, robust and fast artificial networks in robotic forms of full-fledged neural systems.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Redes Neurais de Computação , Animais , Fulerenos , Humanos , Vias Neurais/fisiologia , Neurônios/fisiologia
11.
Microscopy (Oxf) ; 65(2): 97-107, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26671942

RESUMO

Advancement of microscopic technologies established significant progress in our understanding of the brain. In the recent effort to elucidate the complete wiring map of the brain circuitry termed 'connectome', the different modalities of imaging technology, including those of light and electron microscopy, have started providing essential contribution in multiple organisms. The contribution would be impossible without the recent innovation in both acquisition and analyses of the big connectomic data. The current data demonstrated complicated networks with unidirectional and reciprocal connections of the cerebral circuits at the macroscopic and light microscopic ('mesoscopic') levels, and the unimaginable complexity of synaptic connections between axons and dendrites at the electron microscopic ('microscopic') level. At the same time, the data highlighted the necessity to make substantial advancement in methodology of the connectomic studies, including efficient handling and automated analyses of the acquired dataset. Further understanding about structural and functional connectome seems to be facilitated by combinations of the different imaging modalities. Such multidisciplinary approaches will give us the clues to address whether the complete connectome can elucidate fundamental mechanisms processing the basic and higher functions of human brains.


Assuntos
Encéfalo/ultraestrutura , Conectoma/métodos , Microscopia Eletrônica/métodos , Sinapses/ultraestrutura , Humanos , Neurônios/ultraestrutura
12.
Sci Adv ; 1(8): e1500325, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26601259

RESUMO

From human language to birdsong and the chirps of insects, acoustic communication is based on amplitude and frequency modulation of sound signals. Whereas frequency processing starts at the level of the hearing organs, temporal features of the sound amplitude such as rhythms or pulse rates require processing by central auditory neurons. Besides several theoretical concepts, brain circuits that detect temporal features of a sound signal are poorly understood. We focused on acoustically communicating field crickets and show how five neurons in the brain of females form an auditory feature detector circuit for the pulse pattern of the male calling song. The processing is based on a coincidence detector mechanism that selectively responds when a direct neural response and an intrinsically delayed response to the sound pulses coincide. This circuit provides the basis for auditory mate recognition in field crickets and reveals a principal mechanism of sensory processing underlying the perception of temporal patterns.

14.
Artigo em Inglês | MEDLINE | ID: mdl-24653679

RESUMO

A unique delayed self-inhibitory pathway mediated by layer 5 Martinotti Cells was studied in a biologically inspired neural network simulation. Inclusion of this pathway along with layer 5 basket cell lateral inhibition caused balanced competitive learning, which led to the formation of neuronal clusters as were indeed reported in the same region. Martinotti pathway proves to act as a learning "conscience," causing overly successful regions in the network to restrict themselves and let others fire. It thus spreads connectivity more evenly throughout the net and solves the "dead unit" problem of clustering algorithms in a local and biologically plausible manner.


Assuntos
Simulação por Computador , Aprendizagem/fisiologia , Modelos Neurológicos , Neocórtex/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Algoritmos , Animais , Sinapses/fisiologia
15.
Psychoneuroendocrinology ; 38(12): 3070-84, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24094875

RESUMO

Nursing has important physiological and psychological consequences on mothers during the postpartum period. Tuberoinfundibular peptide of 39 residues (TIP39) may contribute to its effects on prolactin release and maternal motivation. Since TIP39-containing fibers and the receptor for TIP39, the parathyroid hormone 2 receptor (PTH2 receptor) are abundant in the arcuate nucleus and the medial preoptic area, we antagonized TIP39 action locally to reveal its actions. Mediobasal hypothalamic injection of a virus encoding an antagonist of the PTH2 receptor markedly decreased basal serum prolactin levels and the suckling-induced prolactin release. In contrast, injecting this virus into the preoptic area had no effect on prolactin levels, but did dampen maternal motivation, judged by reduced time in a pup-associated cage during a place preference test. In support of an effect of TIP39 on maternal motivation, we observed that TIP39 containing fibers and terminals had the same distribution within the preoptic area as neurons expressing Fos in response to suckling. Furthermore, TIP39 terminals closely apposed the plasma membrane of 82% of Fos-ir neurons. Retrograde tracer injected into the arcuate nucleus and the medial preoptic area labeled TIP39 neurons in the posterior intralaminar complex of the thalamus (PIL), indicating that these cells but not other groups of TIP39 neurons project to these hypothalamic regions. We also found that TIP39 mRNA levels in the PIL markedly increased around parturition and remained elevated throughout the lactation period, demonstrating the availability of the peptide in postpartum mothers. Furthermore, suckling, but not pup exposure without physical contact, increased Fos expression by PIL TIP39 neurons. These results indicate that suckling activates TIP39 neurons in the PIL that affect prolactin release and maternal motivation via projections to the arcuate nucleus and the preoptic area, respectively.


Assuntos
Lactação/fisiologia , Comportamento Materno/fisiologia , Motivação/fisiologia , Neuropeptídeos/genética , Neuropeptídeos/fisiologia , Tálamo/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/fisiologia , Toxina da Cólera/farmacologia , Condicionamento Operante/fisiologia , Feminino , Genes fos , Processamento de Imagem Assistida por Computador , Hibridização In Situ , Lentivirus/genética , Masculino , Fibras Nervosas/fisiologia , Reação em Cadeia da Polimerase , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Prolactina/sangue , Ratos , Ratos Wistar , Canais de Potássio Shab/metabolismo , Técnicas Estereotáxicas , Tálamo/metabolismo
16.
Magn Reson Imaging ; 31(8): 1325-30, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23680187

RESUMO

Resting-state functional magnetic resonance imaging (fMRI) is a recent breakthrough in neuroimaging research able to describe "in vivo" the spontaneous baseline neuronal activity characterized by blood oxygen level dependent (BOLD) signal fluctuations at slow frequency (0.01-0.1Hz) that, in the absence of any task, forms spatially distributed functional connectivity networks, called resting state networks (RSNs). The aim of this study was to investigate, in the young and healthy population, the changing of the RSNs after acute ingestion of an alcohol dose able to determine a blood concentration (0.5g/L) that barely exceeds the legal limits for driving in the majority of European Countries. Fifteen healthy volunteers underwent two fMRI sessions using a 1.5T MR scanner before and after alcohol oral consumption. The main sequence acquired was EPI 2D BOLD, one per each session. To prevent the excessive alcohol consumption the subjects underwent the estimation of blood rate by breath test and after the stabilization of blood alcohol level (BAL) at 0.5g/L the subjects underwent the second fMRI session. Functional data elaboration was carried out using the probabilistic independent component analysis (PICA). Spatial maps so obtained were further organized, with MELODIC multisession temporal concatenation FSL option, in a cluster representing the group of pre-alcohol sessions and the group of post-alcohol sessions, followed by the dual regression approach in order to evaluate the increase or decrease in terms of connectivity in the RSNs between the two sessions at group level. The results we obtained reveal that acute consumption of alcohol reduces in a significant way the BOLD signal fluctuations in the resting brain selectively in the sub-callosal cortex (SCC), in left temporal fusiform cortex (TFC) and left inferior temporal gyrus (ITG), which are cognitive regions known to be part of the reward brain network and the ventral visual system.


Assuntos
Encefalopatias/induzido quimicamente , Encefalopatias/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Etanol/intoxicação , Imageamento por Ressonância Magnética/métodos , Doença Aguda , Adulto , Encefalopatias/diagnóstico , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA