Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
1.
ACS Nano ; 18(34): 23684-23701, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39158142

RESUMO

The nanodrug delivery system-based nasal spray (NDDS-NS) can bypass the blood-brain barrier and deliver drugs directly to the brain, offering unparalleled advantages in the treatment of central nervous system (CNS) diseases. However, the current design of NNDS-NS is excessively focused on mucosal absorption while neglecting the impact of nasal deposition on nose-to-brain drug delivery, resulting in an unsatisfactory nose-to-brain delivery efficiency. In this study, the effect of the dispersion medium viscosity on nasal drug deposition and nose-to-brain delivery in NDDS-NS was elucidated. The optimized formulation F5 (39.36 mPa·s) demonstrated significantly higher olfactory deposition fraction (ODF) of 23.58%, and a strong correlation between ODF and intracerebral drug delivery (R2 = 0.7755) was observed. Building upon this understanding, a borneol-modified lipid nanoparticle nasal spray (BLNP-NS) that combined both nasal deposition and mucosal absorption was designed for efficient nose-to-brain delivery. BLNP-NS exhibited an accelerated onset of action and enhanced brain targeting efficiency, which could be attributed to borneol modification facilitating the opening of tight junction channels. Furthermore, BLNP-NS showed superiority in a chronic migraine rat model. It not only provided rapid relief of migraine symptoms but also reversed neuroinflammation-induced hyperalgesia. The results revealed that borneol modification could induce the polarization of microglia, regulate the neuroinflammatory microenvironment, and repair the neuronal damage caused by neuroinflammation. This study highlights the impact of dispersion medium viscosity on the nose-to-brain delivery process of NDDS-NS and serves as a bridge between the formulation development and clinical transformation of NDDS-NS for the treatment of CNS diseases.


Assuntos
Encéfalo , Canfanos , Lipídeos , Nanopartículas , Sprays Nasais , Ratos Sprague-Dawley , Animais , Nanopartículas/química , Ratos , Lipídeos/química , Encéfalo/metabolismo , Canfanos/química , Canfanos/administração & dosagem , Canfanos/farmacologia , Masculino , Administração Intranasal , Sistemas de Liberação de Medicamentos , Doenças do Sistema Nervoso Central/tratamento farmacológico , Mucosa Nasal/metabolismo , Mucosa Nasal/efeitos dos fármacos , Tamanho da Partícula
2.
Front Nutr ; 11: 1408620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135555

RESUMO

Polyphenols are a group of naturally occurring compounds that possess a range of biological properties capable of potentially mitigating or preventing the progression of age-related cognitive decline and Alzheimer's disease (AD). AD is a chronic neurodegenerative disease known as one of the fast-growing diseases, especially in the elderly population. Moreover, as the primary etiology of dementia, it poses challenges for both familial and societal structures, while also imposing a significant economic strain. There is currently no pharmacological intervention that has demonstrated efficacy in treating AD. While polyphenols have exhibited potential in inhibiting the pathological hallmarks of AD, their limited bioavailability poses a significant challenge in their therapeutic application. Furthermore, in order to address the therapeutic constraints, several polymer nanoparticles are being explored as improved therapeutic delivery systems to optimize the pharmacokinetic characteristics of polyphenols. Polymer nanoparticles have demonstrated advantageous characteristics in facilitating the delivery of polyphenols across the blood-brain barrier, resulting in their efficient distribution within the brain. This review focuses on amyloid-related diseases and the role of polyphenols in them, in addition to discussing the anti-amyloid effects and applications of polyphenol-based polymer nanoparticles.

3.
Adv Pharm Bull ; 14(2): 453-468, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39206396

RESUMO

Purpose: Receptor-mediated transcytosis (RMT) is a more specific, highly efficient, and reliable approach to crossing the blood-brain-barrier (BBB) and releasing the therapeutic cargos into the brain parenchyma. Methods: Here, we introduced and characterized a human/mouse-specific novel leptin-derived peptide using in silico, in vitro and in vivo experiments. Results: Based on the bioinformatics analysis and molecular dynamics (MD) simulation, a 14 amino acid peptide sequence (LDP 14) was introduced and its interaction with leptin-receptor (ObR) was analyzed in comparison with an well known leptin-derived peptide, Lep 30. MD simulation data revealed a significant stable interaction between ligand binding domains (LBD) of ObR with LDP 14. Analyses demonstrated suitable cellular uptake of LDP 14 alone and its derivatives (LDP 14-modified G4 PAMAM dendrimer and LDP 14-modified G4 PAMAM/pEGFP-N1 plasmid complexes) via ObR, energy and species dependent manner (preferred uptake by human/mouse cell lines compared to rat cell line). Importantly, our findings illustrated that the entry of LDP 14-modified dendrimers in hBCEC-D3 cells not only is not affected by protein corona (PC) formation, as the main reason for diminishing the cellular uptake, but also PC per se can enhance uptake rate. Finally, fluorescein labeled LDP 14-modified G4 PAMAM dendrimers efficiently accumulated in the mice brain with lower biodistribution in other organs, in our in vivo study. Conclusion: LDP 14 introduced as a novel and highly efficient ligand, which can be used for drugs/genes delivery to brain tissue in different central nervous system (CNS) disorders.

4.
J Pharm Sci ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39216538

RESUMO

The current research aimed to design and optimize hyaluronic acid-coated transbilosomes containing venlafaxine (VLF-HA-TBLs) for nose-to-brain delivery for improved management of depressive disorder. Venlafaxine-loaded transbilosomes (VLF-TBLs) were developed according to the film hydration procedure, optimized for maximum efficiency using the quality by design-based Box-Behnken design (BBD), and then coated with hyaluronic acid (HA). The optimized VLF-HA-TBLs were subjected to in vitro characterization, integrated into a thermolabile gel, and then exposed to in vivo evaluation studies. The results revealed that the VLF-HA-TBLs formulation exhibited acceptable size (185.6±4.9 nm), surface charge (-39.8±1.7 mV), and entrapment efficiency (69.6 ± 2.6%). The morphological study revealed that nanovesicles were spherical and displayed a consistent size distribution without particle aggregation. It also showed improved ex vivo nasal diffusion and a prolonged release profile. In addition, the formulated VLF-HA-TBLs were stable under the studied conditions and tolerable when applied intranasally. Compared to the intranasal administration of VLF solution (VLF-SOL), the biodistribution analysis showed that VLF-HA-TBLs delivered intranasally had a relative bioavailability of 441% in the brain and 288% in plasma. Moreover, the intranasal delivery of VLF-HA-TBLs demonstrated much higher bioavailability (512%) in the brain compared to VLF-SOL administered intravenously. Collectively, it could be possible to infer that HA-TBLs might be an effective nanocarrier to administer VLF to the brain via the nasal route.

5.
Pharm Dev Technol ; : 1-12, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38965754

RESUMO

Depression, the second biggest cause of disability worldwide, is widespread. Many antidepressant medications, including Desvenlafaxine Succinate (D.V.S.), function by elevating neurotransmitter levels at the synapse through the inhibition of reabsorption by neurons. However, the effectiveness of these treatments is often limited by their inability to reach the brain using conventional administration methods. Bilosome-stabilized nanovesicles containing bile salts have drawn much interest because of their adaptability and versatility in various applications. This study aimed to address this issue by formulating intranasal bilosomes incorporated into a mucoadhesive in situ gel to deliver D.V.S. directly to the brain for depression treatment. The desvenlafaxine-loaded bilosomes were developed using a thin film hydration method based on the l-optimal design. They were intended to provide a more convenient route of administration for antidepressants, enhancing bioavailability and brain targeting through intranasal delivery. The study assessed the optimized bilosomes for particle size (311.21 ± 0.42 nm), Zeta potential (-37.35 ± 0.43)and encapsulation efficiency (99.53 ± 0.41%) and further evaluated them in ex vivo and in vivo pharmacokinetics studies. Pharmacokinetic data reveal enhanced brain uptake compared to a free drug. A statistically optimized bilosome formulation was determined. The intranasal administration of mucoadhesive in situ gel containing desvenlafaxine succinate-loaded bilosomes facilitated direct nose-to-brain drug delivery, improving brain bioavailability.

6.
Eur J Med Chem ; 276: 116674, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39004017

RESUMO

Crocetin (CCT), a natural bioactive compound extracted and purified from the traditional Chinese medicinal herb saffron, has been shown to play a role in neurodegenerative diseases, particularly depression. However, due to challenges with solubility, targeting, and bioavailability, formulation development and clinical use of CCT are severely limited. In this study, we used the emulsification-reverse volatilization method to prepare CCT-loaded nanoliposomes (CN). We further developed a borneol (Bor) and lactoferrin (Lf) dual-modified CCT-loaded nanoliposome (BLCN) for brain-targeted delivery of CCT. The results of transmission electron microscope (TEM) and particle size analysis indicated that the size of BLCN (∼140 nm) was suitable for transcellular transport across olfactory axons (∼200 nm), potentially paving a direct path to the brain. Studies on lipid solubility, micropolarity, and hydrophobicity showed that BLCN had a relatively high Lf grafting rate (81.11 ± 1.33 %) and CCT entrapment efficiency (83.60 ± 1.04 %) compared to other liposomes, likely due to Bor improving the lipid solubility of Lf, and the combination promoting the orderly arrangement of liposome membrane molecules. Microplate reader and fluorescence microscopy analysis showed that BLCN efficiently promoted the endocytosis of fluorescent coumarin 6 into HT22 cells with a maximal fluorescence intensity of (13.48 ± 0.80 %), which was significantly higher than that of CCT (5.73 ± 1.17 %) and CN (12.13 ± 1.01 %). BLCN also exhibited sustained function, remaining effective for more than 12 h after reaching a peak at 1 h in cells, while CN showed a significant decrease after 4 h. The uptake mechanisms of BLCN in HT22 cells mainly involve energy-dependent, caveolae-mediated, and microtubule-mediated endocytosis, as well as micropinocytosis. Furthermore, BLCN displayed a significant neuroprotective effect on HT22 cells in glutamate-, corticosterone-, and H2O2-induced models. Tissue fluorescence image analysis of mice showed that BLCN exhibited substantial retention of fluorescent DiR in the brain after nasal administration for 12 h. These findings suggest that CCT has the potential for cellular uptake, neuroprotection, and targeted delivery to the brain following intranasal administration when encapsulated in Bor and Lf dual-modified nanoliposomes.


Assuntos
Encéfalo , Canfanos , Carotenoides , Lactoferrina , Lipossomos , Nanopartículas , Fármacos Neuroprotetores , Vitamina A , Animais , Vitamina A/química , Vitamina A/administração & dosagem , Vitamina A/análogos & derivados , Lipossomos/química , Carotenoides/química , Carotenoides/farmacologia , Camundongos , Encéfalo/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Canfanos/química , Canfanos/farmacologia , Lactoferrina/química , Lactoferrina/farmacologia , Lactoferrina/administração & dosagem , Nanopartículas/química , Linhagem Celular , Tamanho da Partícula , Masculino , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Neuroproteção/efeitos dos fármacos
7.
Arch Pharm (Weinheim) ; : e2400343, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074966

RESUMO

Glioblastoma multiforme is a very combative and threatening type of cancer. The standard course of treatment involves excising the tumor surgically, then administering chemotherapy and radiation therapy. Because of the presence of the blood-brain barrier and the unique characteristics of the tumor microenvironment, chemotherapy is extremely difficult and has a high incidence of relapse. With their capacity to precisely target and transport therapeutic medications to the tumor while overcoming the challenges provided by invasive and infiltrative gliomas, nanocarriers offer a potentially beneficial treatment option for gliomas. Drug repositioning or, in other words, finding novel therapeutic uses for medications that have received approval for previous uses has also recently emerged to provide alternative treatments for many diseases, with glioblastoma being among them. In this article, our goal is to shed light on the pathogenesis of glioma and summarize the proposed treatment approaches in the last decade, highlighting how combining repositioned drugs and nanocarriers technology can reduce drug resistance and improve therapeutic efficacy in primary glioma.

8.
Small ; : e2401045, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38948959

RESUMO

A cerebral ischemia-reperfusion injury is ensued by an intricate interplay between various pathological processes including excitotoxicity, oxidative stress, inflammation, and apoptosis. For a long time, drug intervention policies targeting a single signaling pathway have failed to achieve the anticipated clinical efficacy in the intricate and dynamic inflammatory environment of the brain. Moreover, inadequate targeted drug delivery remains a significant challenge in cerebral ischemia-reperfusion injury therapy. In this study, a multifunctional nanoplatform (designated as PB-006@MSC) is developed using ZL006-loaded Prussian blue nanoparticles (PBNPs) camouflaged by a mesenchymal stem cell (MSC) membrane (MSCm). ZL006 is a neuroprotectant. It can be loaded efficiently into the free radical scavenger PBNP through mesoporous adsorption. This can simultaneously modulate multiple targets and pathways. MSCm biomimetics can reduce the nanoparticle immunogenicity, efficiently enhance their homing capability to the cerebral ischemic penumbra, and realize active-targeting therapy for ischemic stroke. In animal experiments, PB-006@MSC integrated reactive oxygen species (ROS) scavenging and neuroprotection. Thereby, it selectively targeted the cerebral ischemic penumbra (about fourfold higher accumulation at 24 h than in the non-targeted group), demonstrated a remarkable therapeutic efficacy in reducing the volume of cerebral infarction (from 37.1% to 2.3%), protected the neurogenic functions, and ameliorated the mortality.

9.
ACS Appl Mater Interfaces ; 16(28): 35925-35935, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950334

RESUMO

The development of efficient theranostic nanoagents for the precise diagnosis and targeted therapy of glioblastoma (GBM) remains a big challenge. Herein, we designed and developed porphyrin-based organic nanoparticles (PNP NPs) with strong emission in the near-infrared IIa window (NIR-IIa) for orthotopic GBM theranostics. PNP NPs possess favorable photoacoustic and photothermal properties, high photostability, and low toxicity. After modification with the RGD peptide, the obtained PNPD NPs exhibited enhanced blood-brain barrier (BBB) penetration capability and GBM targeting ability. NIR-IIa imaging was employed to monitor the in vivo biodistribution and accumulation of the nanoparticles, revealing a significant enhancement in penetration depth and signal-to-noise ratio. Both in vitro and in vivo results demonstrated that PNPD NPs effectively inhibited the proliferation of tumor cells and induced negligible side effects in normal brain tissues. In general, the work presented a kind of brain-targeted porphyrin-based NPs with NIR-IIa fluorescence for orthotopic glioblastoma theranostics, showing promising prospects for clinical translation.


Assuntos
Glioblastoma , Nanopartículas , Porfirinas , Nanomedicina Teranóstica , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Animais , Nanopartículas/química , Humanos , Porfirinas/química , Porfirinas/farmacologia , Camundongos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Raios Infravermelhos , Distribuição Tecidual , Barreira Hematoencefálica/metabolismo , Camundongos Nus , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Fluorescência
10.
Theranostics ; 14(8): 3221-3245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855177

RESUMO

The availability of non-invasive drug delivery systems capable of efficiently transporting bioactive molecules across the blood-brain barrier to specific cells at the injury site in the brain is currently limited. Delivering drugs to neurons presents an even more formidable challenge due to their lower numbers and less phagocytic nature compared to other brain cells. Additionally, the diverse types of neurons, each performing specific functions, necessitate precise targeting of those implicated in the disease. Moreover, the complex synthetic design of drug delivery systems often hinders their clinical translation. The production of nanomaterials at an industrial scale with high reproducibility and purity is particularly challenging. However, overcoming this challenge is possible by designing nanomaterials through a straightforward, facile, and easily reproducible synthetic process. Methods: In this study, we have developed a third-generation 2-deoxy-glucose functionalized mixed layer dendrimer (2DG-D) utilizing biocompatible and cost-effective materials via a highly facile convergent approach, employing copper-catalyzed click chemistry. We further evaluated the systemic neuronal targeting and biodistribution of 2DG-D, and brain delivery of a neuroprotective agent pioglitazone (Pio) in a pediatric traumatic brain injury (TBI) model. Results: The 2DG-D exhibits favorable characteristics including high water solubility, biocompatibility, biological stability, nanoscale size, and a substantial number of end groups suitable for drug conjugation. Upon systemic administration in a pediatric mouse model of traumatic brain injury (TBI), the 2DG-D localizes in neurons at the injured brain site, clears rapidly from off-target locations, effectively delivers Pio, ameliorates neuroinflammation, and improves behavioral outcomes. Conclusions: The promising in vivo results coupled with a convenient synthetic approach for the construction of 2DG-D makes it a potential nanoplatform for addressing brain diseases.


Assuntos
Dendrímeros , Desoxiglucose , Sistemas de Liberação de Medicamentos , Neurônios , Animais , Dendrímeros/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Desoxiglucose/farmacologia , Desoxiglucose/farmacocinética , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Camundongos , Pioglitazona/farmacologia , Pioglitazona/administração & dosagem , Pioglitazona/farmacocinética , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encefalopatias/tratamento farmacológico , Humanos , Modelos Animais de Doenças , Distribuição Tecidual , Masculino
11.
Pharmaceutics ; 16(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931926

RESUMO

Etomidate is a general anesthetic that has shown good hemodynamic stability without significant cardiovascular or respiratory depression. Despite several kinds of dosage forms having been reported for this drug, formulation types are very limited in clinical practice, and brain-targeted formulations for this central nervous system (CNS) drug have been rarely reported. Moreover, studies on the biocompatibility, toxicity, and anesthetic effects of the etomidate preparations in vivo were inadequate. The present study was to develop lactoferrin-modified liposomal etomidate (Eto-lip-LF) for enhanced drug distribution in the brain and improved anesthetic effects. Eto-lip-LF had good stability for storage and hemocompatibility for intravenous injection. Compared with the non-lactoferrin-containing liposomes, the lactoferrin-modified liposomes had notably enhanced brain-targeting ability in vivo, which was probably realized by the binding of transferrin with the transferrin and lactoferrin receptors highly distributed in the brain. Eto-lip-LF had a therapeutic index of about 25.3, higher than that of many other general anesthetics. Moreover, compared with the commercial etomidate emulsion, Eto-lip-LF could better achieve rapid onset of general anesthesia and rapid recovery from anesthesia, probably due to the enhanced drug delivery to the brain. The above results demonstrated the potential of this lactoferrin-modified liposomal etomidate to become an alternative preparation for clinical general anesthesia.

12.
J Control Release ; 372: 85-94, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838784

RESUMO

Nanoparticles, in particular PEGylated, show great potential for in vivo brain targeted drug delivery. Nevertheless, how polyethylene glycol (PEG) length of nanoparticles affects their blood brain barrier (BBB) penetration or brain targeting is still unclear. In this study, we investigated the power of PEG chain-lengths (2, 3.4, 5, 10 kDa) in BBB penetration and brain targeting using Angiopep-2 peptide decorated liposomes. We found that PEG chain-length is critical, where the shorter PEG enabled the Angiopep-2 decorated liposomes to display more potent in vitro cell uptake via endocytosis. In contrast, their in vitro BBB penetration via transcytosis was much weaker relative to the liposomes with longer PEG chains, which result from their ineffective BBB exocytosis. Interestingly, the in vivo brain targeting aligns with the in vitro BBB penetration, as the long chain PEG-modified liposomes exerted superior brain accumulation both in normal or orthotropic glioblastoma (GBM) bearing mice, which could be ascribed to the combinational effect of prolonged circulation and enhanced BBB penetration of long chain PEG attached liposomes. These results demonstrate the crucial role of PEG length of nanoparticles for BBB penetration and brain targeting, providing guidance for PEG length selection in the design of nanocarrier for brain diseases treatment.


Assuntos
Barreira Hematoencefálica , Encéfalo , Lipossomos , Peptídeos , Polietilenoglicóis , Animais , Polietilenoglicóis/química , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Peptídeos/química , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Masculino , Camundongos , Camundongos Nus , Nanopartículas/química , Nanopartículas/administração & dosagem , Camundongos Endogâmicos BALB C
13.
J Control Release ; 371: 484-497, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851537

RESUMO

The precise and targeted delivery of therapeutic agents to the lesion sites remains a major challenge in treating brain diseases represented by ischemic stroke. Herein, we modified liposomes with mesenchymal stem cells (MSC) membrane to construct biomimetic liposomes, termed MSCsome. MSCsome (115.99 ± 4.03 nm) exhibited concentrated accumulation in the cerebral infarcted hemisphere of mice with cerebral ischemia-reperfusion injury, while showing uniform distribution in the two cerebral hemispheres of normal mice. Moreover, MSCsome exhibited high colocalization with damaged nerve cells in the infarcted hemisphere, highlighting its advantageous precise targeting capabilities over liposomes at both the tissue and cellular levels. Leveraging its superior targeting properties, MSCsome effectively delivered Dl-3-n-butylphthalide (NBP) to the injured hemisphere, making a single-dose (15 mg/kg) intravenous injection of NBP-encapsulated MSCsome facilitate the recovery of motor functions in model mice by improving the damaged microenvironment and suppressing neuroinflammation. This study underscores that the modification of the MSC membrane notably enhances the capacity of liposomes for precisely targeting the injured hemisphere, which is particularly crucial in treating cerebral ischemia-reperfusion injury.


Assuntos
Benzofuranos , Sistemas de Liberação de Medicamentos , Lipossomos , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/terapia , Masculino , Benzofuranos/administração & dosagem , Isquemia Encefálica/terapia , Materiais Biomiméticos/química , Materiais Biomiméticos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Células-Tronco Mesenquimais/métodos
14.
Int J Nanomedicine ; 19: 6177-6199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911498

RESUMO

Purpose: Ginsenoside Rg3 (Rg3) and Panax notoginseng saponins (PNS) can be used for ischemic stroke treatment, however, the lack of targeting to the ischemic region limits the therapeutic effect. To address this, we leveraged the affinity of macrophage membrane proteins for inflamed brain microvascular endothelial cells to develop a macrophage membrane-cloaked liposome loaded with Rg3 and PNS (MM-Lip-Rg3/PNS), which can precisely target brain lesion region through intranasal administration. Methods: MM-Lip-Rg3/PNS was prepared by co-extrusion method and was performed by characterization, stability, surface protein, and morphology. The cellular uptake, immune escape ability, and blood-brain barrier crossing ability of MM-Lip-Rg3/PNS were studied in vitro. The in vivo brain targeting, biodistribution and anti-ischemic efficacy of MM-Lip-Rg3/PNS were evaluated in MACO rats, and we determined the diversity of the nasal brain pathway through the olfactory nerve blockade model in rats. Finally, the pharmacokinetics and brain targeting index of MM-Lip-Rg3/PNS were investigated. Results: Our results indicated that MM-Lip-Rg3/PNS was spherical with a shell-core structure. MM-Lip-Rg3/PNS can avoid mononuclear phagocytosis, actively bind to inflammatory endothelial cells, and have the ability to cross the blood-brain barrier. Moreover, MM-Lip-Rg3/PNS could specifically target ischemic sites, even microglia, increase the cumulative number of drugs in the brain, improve the inflammatory environment of the brain, and reduce the infarct size. By comparing olfactory nerve-blocking rats with normal rats, it was found that there are direct and indirect pathways for nasal entry into the brain. Pharmacokinetics demonstrated that MM-Lip-Rg3/PNS exhibited stronger brain targeting and prolonged drug half-life. Conclusion: MM-Lip-Rg3/PNS might contribute to the accumulation of Rg3 and PNS in the ischemic brain area to improve treatment efficacy. This biomimetic nano-drug delivery system provides a new and promising strategy for the treatment of ischemic stroke.


Assuntos
Administração Intranasal , Barreira Hematoencefálica , Ginsenosídeos , AVC Isquêmico , Lipossomos , Macrófagos , Animais , Lipossomos/química , AVC Isquêmico/tratamento farmacológico , Ratos , Masculino , Ginsenosídeos/farmacocinética , Ginsenosídeos/química , Ginsenosídeos/administração & dosagem , Ginsenosídeos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Ratos Sprague-Dawley , Distribuição Tecidual , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/administração & dosagem , Saponinas/farmacocinética , Saponinas/química , Saponinas/administração & dosagem , Saponinas/farmacologia , Camundongos
15.
Front Bioeng Biotechnol ; 12: 1403511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919382

RESUMO

Gliomas are typical malignant brain tumours affecting a wide population worldwide. Operation, as the common treatment for gliomas, is always accompanied by postoperative drug chemotherapy, but cannot cure patients. The main challenges are chemotherapeutic drugs have low blood-brain barrier passage rate and a lot of serious adverse effects, meanwhile, they have difficulty targeting glioma issues. Nowadays, the emergence of nanoparticles (NPs) drug delivery systems (NDDS) has provided a new promising approach for the treatment of gliomas owing to their excellent biodegradability, high stability, good biocompatibility, low toxicity, and minimal adverse effects. Herein, we reviewed the types and delivery mechanisms of NPs currently used in gliomas, including passive and active brain targeting drug delivery. In particular, we primarily focused on various hopeful types of NPs (such as liposome, chitosan, ferritin, graphene oxide, silica nanoparticle, nanogel, neutrophil, and adeno-associated virus), and discussed their advantages, disadvantages, and progress in preclinical trials. Moreover, we outlined the clinical trials of NPs applied in gliomas. According to this review, we provide an outlook of the prospects of NDDS for treating gliomas and summarise some methods that can enhance the targeting specificity and safety of NPs, like surface modification and conjugating ligands and peptides. Although there are still some limitations of these NPs, NDDS will offer the potential for curing glioma patients.

16.
Int J Pharm ; 658: 124218, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734273

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disorder that causes severe dementia and memory loss. Surface functionalized poly(lactic-co-glycolic acid) nanoparticles have been reported for better transport through the blood-brain barrier for AD therapy. This study investigated the improved therapeutic potential of berberine-loaded poly(lactic-co-glycolic acid)/Tet-1 peptide nanoparticles (BBR/PLGA-Tet NPs) in a rat model of sporadic AD. BBR was loaded into the PLGA-Tet conjugate. BBR/PLGA-Tet NPs were physicochemically and morphologically characterized. AD was achieved by bilateral intracerebroventricular (ICV) injection of streptozotocin (STZ). Cognitively impaired rats were divided into STZ, STZ + BBR, STZ + BBR/PLGA-Tet NPs, and STZ + PLGA-Tet NPs groups. Cognitive improvement was assessed using the Morris Water Maze. Brain acetylcholinesterase and monoamine oxidase activities, amyloid ß42 (Aß42), and brain glycemic markers were estimated. Further, hippocampal neuroplasticity (BDNF, pCREB, and pERK/ERK), Tau pathogenesis (pGSK3ß/GSK3ß, Cdk5, and pTau), inflammatory, and apoptotic markers were evaluated. Finally, histopathological changes were monitored. ICV-STZ injection produces AD-like pathologies evidenced by Aß42 deposition, Tau hyperphosphorylation, impaired insulin signaling and neuroplasticity, and neuroinflammation. BBR and BBR/PLGA-Tet NPs attenuated STZ-induced hippocampal damage, enhanced cognitive performance, and reduced Aß42, Tau phosphorylation, and proinflammatory responses. BBR/PLGA-Tet NPs restored neuroplasticity, cholinergic, and monoaminergic function, which are critical for cognition and brain function. BBR/PLGA-Tet NPs may have superior therapeutic potential in alleviating sporadic AD than free BBR due to their bioavailability, absorption, and brain uptake.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Hipocampo , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Estreptozocina , Proteínas tau , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Masculino , Nanopartículas/química , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Proteínas tau/metabolismo , Ratos , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Ratos Sprague-Dawley , Sistemas de Liberação de Fármacos por Nanopartículas/química , Portadores de Fármacos/química , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos Wistar
17.
J Nanobiotechnology ; 22(1): 260, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760847

RESUMO

Neurodegenerative diseases are characterized by extensive loss of function or death of brain cells, hampering the life quality of patients. Brain-targeted drug delivery is challenging, with a low success rate this far. Therefore, the application of targeting ligands in drug vehicles, such as lipid-based and polymeric nanoparticles, holds the promise to overcome the blood-brain barrier (BBB) and direct therapies to the brain, in addition to protect their cargo from degradation and metabolization. In this review, we discuss the barriers to brain delivery and the different types of brain-targeting ligands currently in use in brain-targeted nanoparticles, such as peptides, proteins, aptamers, small molecules, and antibodies. Moreover, we present a detailed review of the different targeting ligands used to direct nanoparticles to specific brain cells, like neurons (C4-3 aptamer, neurotensin, Tet-1, RVG, and IKRG peptides), astrocytes (Aquaporin-4, D4, and Bradykinin B2 antibodies), oligodendrocytes (NG-2 antibody and the biotinylated DNA aptamer conjugated to a streptavidin core Myaptavin-3064), microglia (CD11b antibody), neural stem cells (QTRFLLH, VPTQSSG, and NFL-TBS.40-63 peptides), and to endothelial cells of the BBB (transferrin and insulin proteins, and choline). Reports demonstrated enhanced brain-targeted delivery with improved transport to the specific cell type targeted with the conjugation of these ligands to nanoparticles. Hence, this strategy allows the implementation of high-precision medicine, with reduced side effects or unwanted therapy clearance from the body. Nevertheless, the accumulation of some of these nanoparticles in peripheral organs has been reported indicating that there are still factors to be improved to achieve higher levels of brain targeting. This review is a collection of studies exploring targeting ligands for the delivery of nanoparticles to the brain and we highlight the advantages and limitations of this type of approach in precision therapies.


Assuntos
Barreira Hematoencefálica , Encéfalo , Sistemas de Liberação de Medicamentos , Nanopartículas , Humanos , Barreira Hematoencefálica/metabolismo , Animais , Encéfalo/metabolismo , Ligantes , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Peptídeos/química
18.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710921

RESUMO

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Assuntos
Administração Intranasal , Encéfalo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Glicerídeos , Mucosa Nasal , Tamanho da Partícula , Verapamil , Administração Intranasal/métodos , Animais , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Verapamil/administração & dosagem , Verapamil/farmacocinética , Distribuição Tecidual , Glicerídeos/química , Mucosa Nasal/metabolismo , Disponibilidade Biológica , Ratos , Bloqueadores dos Canais de Cálcio/farmacocinética , Bloqueadores dos Canais de Cálcio/administração & dosagem , Poloxâmero/química , Masculino , Química Farmacêutica/métodos , Ratos Wistar , Nanopartículas/química
19.
AAPS PharmSciTech ; 25(5): 96, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710855

RESUMO

Central nervous system-related disorders have become a continuing threat to human life and the current statistic indicates an increasing trend of such disorders worldwide. The primary therapeutic challenge, despite the availability of therapies for these disorders, is to sustain the drug's effective concentration in the brain while limiting its accumulation in non-targeted areas. This is attributed to the presence of the blood-brain barrier and first-pass metabolism which limits the transportation of drugs to the brain irrespective of popular and conventional routes of drug administration. Therefore, there is a demand to practice alternative routes for predictable drug delivery using advanced drug delivery carriers to overcome the said obstacles. Recent research attracted attention to intranasal-to-brain drug delivery for promising targeting therapeutics in the brain. This review emphasizes the mechanisms to deliver therapeutics via different pathways for nose-to-brain drug delivery with recent advancements in delivery and formulation aspects. Concurrently, for the benefit of future studies, the difficulties in administering medications by intranasal pathway have also been highlighted.


Assuntos
Administração Intranasal , Encéfalo , Sistemas de Liberação de Medicamentos , Animais , Humanos , Administração Intranasal/métodos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Mucosa Nasal/metabolismo , Preparações Farmacêuticas/administração & dosagem
20.
Xenobiotica ; 54(5): 233-247, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38638108

RESUMO

This study explored the distribution of esculin microspheres in rabbit brain tissue following intravitreal injection and investigated the possibility of direct entry of the drug into the brain through the eye, to develop a formulation with enhanced therapeutic efficacy against Parkinson's disease.Chitosan microspheres of esculin were prepared via an emulsification cross-linking method and their characteristics were evaluated, including angle of repose, bulk density, and swelling ratio. Furthermore, the pharmacokinetic parameters and brain tissue distribution in rabbits were compared among groups administered esculin eye drops, intravitreal esculin solution, and intravitreal esculin microspheres, to determine whether esculin could enter the brain through an ocular route.The results showed that the prepared esculin microspheres were spherical and had good fluidity. Notably, intravitreal administration enhanced the area under the curve (AUC) of esculin in the thalamus. Delivery through microspheres prolonged the drug retention time in both rabbit plasma and brain tissues, as well as the brain-targeting efficiency of esculin.The collective findings indicated that there may be a direct eye-brain pathway facilitating enter of esculin microspheres into brain tissue after intravitreal injection, supporting the utility of intravitreal esculin microspheres as an effective therapeutic formulation for Parkinson's disease, a long-term chronic condition.


Assuntos
Encéfalo , Esculina , Injeções Intravítreas , Microesferas , Animais , Coelhos , Encéfalo/metabolismo , Esculina/farmacocinética , Esculina/administração & dosagem , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA