Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cancers (Basel) ; 15(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37444409

RESUMO

Invasive lobular carcinoma (ILC) is a common breast cancer subtype that is often diagnosed at advanced stages and causes significant morbidity. Late-onset secondary tumor recurrence affects up to 30% of ILC patients, posing a therapeutic challenge if resistance to systemic therapy develops. Nonetheless, there is a lack of preclinical models for ILC, and the current models do not accurately reproduce the complete range of the disease. We created clinically relevant metastatic xenografts to address this gap by grafting the triple-negative IPH-926 cell line into mouse milk ducts. The resulting intraductal xenografts accurately recapitulate lobular carcinoma in situ (LCIS), invasive lobular carcinoma, and metastatic ILC in relevant organs. Using a panel of 15 clinical markers, we characterized the intratumoral heterogeneity of primary and metastatic lesions. Interestingly, intraductal IPH-926 xenografts express low but actionable HER2 and are not dependent on supplementation with the ovarian hormone estradiol for their growth. This model provides a valuable tool to test the efficiency of potential new ILC therapeutics, and it may help detect vulnerabilities within ILC that can be exploited for therapeutic targeting.

2.
Bioengineering (Basel) ; 10(6)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37370613

RESUMO

Breast cancer is the most common cancer among women, and even though treatments are available, efficiency varies with the patients. In vitro 2D models are commonly used to develop new treatments. However, 2D models overestimate drug efficiency, which increases the failure rate in later phase III clinical trials. New model systems that allow extensive and efficient drug screening are thus required. Three-dimensional printed hydrogels containing active components for cancer cell growth are interesting candidates for the preparation of next generation cancer cell models. Macromolecules, obtained from marine- and land-based resources, can form biopolymers (polysaccharides such as alginate, chitosan, hyaluronic acid, and cellulose) and bioactive components (structural proteins such as collagen, gelatin, and silk fibroin) in hydrogels with adequate physical properties in terms of porosity, rheology, and mechanical strength. Hence, in this study attention is given to biofabrication methods and to the modification with biological macromolecules to become bioactive and, thus, optimize 3D printed structures that better mimic the cancer cell microenvironment. Ink formulations combining polysaccharides for tuning the mechanical properties and bioactive polymers for controlling cell adhesion is key to optimizing the growth of the cancer cells.

3.
Biomed Pharmacother ; 161: 114490, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931031

RESUMO

Female breast cancer is the most deadly cancer in women worldwide. The triple-negative breast cancer subtype therapies, due to the lack of specific drug targets, are still based on systemic chemotherapy with doxorubicin, which is burdened with severe adverse effects. To enhance therapeutic success and protect against systemic toxicity, drug carriers or combination therapy are being developed. Thus, an innovative liposomal formulation containing doxorubicin and the main nutraceutical, sulforaphane, has been developed. The anticancer efficacy and safety of the proposed liposomal formulation was evaluated in vivo, in a 4T1 mouse model of triple-negative breast cancer, and the mechanism of action was determined in vitro, using triple-negative breast cancer MDA-MB-231 and non-tumorigenic breast MCF-10A cell line. The elaborated drug carriers were shown to efficiently deliver both compounds into the cancer cell and direct doxorubicin to the cell nucleus. Incorporation of sulforaphane resulted in a twofold inhibition of tumor growth and the potential of up to a fourfold reduction in doxorubicin concentration due to the synergistic interaction between the two compounds. Sulforaphane was shown to increase the accumulation of doxorubicin in the nuclei of cancer cells, accompanied by inhibition of mitosis, without affecting the reactive oxygen species status of the cell. In normal cells, an antagonistic effect resulting in less cytotoxicity was observed. In vivo results showed that sulforaphane incorporation yielded not only cardioprotective, but also nephro- and hepatoprotective effects. The results of the research revealed the prospects of applying sulforaphane as a component of liposomal doxorubicin in triple-negative breast cancer chemotherapy.


Assuntos
Neoplasias de Mama Triplo Negativas , Camundongos , Humanos , Animais , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Doxorrubicina , Lipossomos , Portadores de Fármacos/uso terapêutico , Modelos Animais
4.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806452

RESUMO

Monolayer cultures, the less standard three-dimensional (3D) culturing systems, and xenografts are the main tools used in current basic and drug development studies of cancer research. The aim of biofabrication is to design and construct a more representative in vivo 3D environment, replacing two-dimensional (2D) cell cultures. Here, we aim to provide a complex comparative analysis of 2D and 3D spheroid culturing, and 3D bioprinted and xenografted breast cancer models. We established a protocol to produce alginate-based hydrogel bioink for 3D bioprinting and the long-term culturing of tumour cells in vitro. Cell proliferation and tumourigenicity were assessed with various tests. Additionally, the results of rapamycin, doxycycline and doxorubicin monotreatments and combinations were also compared. The sensitivity and protein expression profile of 3D bioprinted tissue-mimetic scaffolds showed the highest similarity to the less drug-sensitive xenograft models. Several metabolic protein expressions were examined, and the in situ tissue heterogeneity representing the characteristics of human breast cancers was also verified in 3D bioprinted and cultured tissue-mimetic structures. Our results provide additional steps in the direction of representing in vivo 3D situations in in vitro studies. Future use of these models could help to reduce the number of animal experiments and increase the success rate of clinical phase trials.


Assuntos
Bioimpressão , Neoplasias , Alginatos/química , Animais , Bioimpressão/métodos , Humanos , Hidrogéis/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34977930

RESUMO

Luminal breast cancer (BrCa) has a favorable prognosis compared with other tumor subtypes. However, with time, tumors may evolve and lead to disease progression; thus, there is a great interest in unraveling the mechanisms that drive tumor metastasis and endocrine resistance. In this review, we focus on one of the many pathways that have been involved in tumor progression, the fibroblast growth factor/fibroblast growth factor receptor (FGFR) axis. We emphasize in data obtained from in vivo experimental models that we believe that in luminal BrCa, tumor growth relies in a crosstalk with the stromal tissue. We revisited the studies that illustrate the interaction between hormone receptors and FGFR. We also highlight the most frequent alterations found in BrCa cell lines and provide a short review on the trials that use FGFR inhibitors in combination with endocrine therapies. Analysis of these data suggests there are many players involved in this pathway that might be also targeted to decrease FGF signaling, in addition to specific FGFR inhibitors that may be exploited to increase their efficacy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Receptores de Esteroides/fisiologia , Transdução de Sinais/fisiologia , Animais , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/química , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Receptor alfa de Estrogênio/análise , Feminino , Fatores de Crescimento de Fibroblastos/genética , Amplificação de Genes , Humanos , Camundongos , Mutação , Receptor Cross-Talk/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/genética
6.
Cancers (Basel) ; 13(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830869

RESUMO

Breast cancer is a leading cause of cancer-associated death in women. The clinical management of breast cancers is normally carried out using a combination of chemotherapy, surgery and radiation therapy. The majority of research investigating breast cancer therapy until now has mainly utilized two-dimensional (2D) in vitro cultures or murine models of disease. However, there has been significant uptake of three-dimensional (3D) in vitro models by cancer researchers over the past decade, highlighting a complimentary model for studies of radiotherapy, especially in conjunction with chemotherapy. In this review, we underline the effects of radiation therapy on normal and malignant breast cells and tissues, and explore the emerging opportunities that pre-clinical 3D models offer in improving our understanding of this treatment modality.

7.
Adv Healthc Mater ; 10(18): e2100636, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34235891

RESUMO

Plasmonic photothermal therapy (PPTT) using gold nanoparticles (AuNPs) has shown great potential for use in selective tumor treatment, because the AuNPs can generate destructive heat preferentially upon irradiation. However, PPTT using AuNPs has not been added to practice, owing to insufficient heating methods and tissue temperature measurement techniques, leading to unreliable and inaccurate treatments. Because the photothermal properties of AuNPs vary with laser power, particle optical density, and tissue depth, the accurate prediction of heat generation is indispensable for clinical treatment. In this report, bioprinted 3D complex tissue constructs comprising processed gel obtained from porcine skin and human decellularized adipose tissue are presented for characterization of the photothermal properties of gold nanorods (AuNRs) having an aspect ratio of 3.7 irradiated by a near-infrared laser. Moreover, an analytical function is suggested for achieving PPTT that can cause thermal damage selectively on early-stage human breast cancer by regulating the heat generation of the AuNRs in the tissue.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Nanotubos , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Ouro , Humanos , Nanopartículas Metálicas/uso terapêutico , Fototerapia
9.
Front Vet Sci ; 7: 439, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851022

RESUMO

Research using in vitro canine mammary cancer cell lines and naturally-occurring canine mammary tumors are not only fundamental models used to advance the understanding of cancer in veterinary patients, but are also regarded as excellent translational models of human breast cancer. Human breast cancer is commonly treated with radiotherapy; however, tumor response depends on both innate radiosensitivity and on tumor repopulation by cells that develop radioresistance. Comparative canine and human studies investigating the mechanisms of radioresistance may lead to novel cancer treatments that benefit both species. In this study, we developed a canine mammary cancer (REM-134) radioresistant (RR) cell line and investigated the cellular mechanisms related to the development of acquired radioresistance. We performed a comparative analysis of this resistant model with our previously developed human breast cancer radioresistant cell lines (MCF-7 RR, ZR-751 RR, and MDA-MB-231 RR), characterizing inherent differences through genetic, molecular, and cell biology approaches. RR cells demonstrated enhanced invasion/migration capabilities, with phenotypic evidence suggestive of epithelial-to-mesenchymal transition. Similarities were identified between the REM-134 RR, MCF-7 RR, and ZR-751 RR cell lines in relation to the pattern of expression of both epithelial and mesenchymal genes, in addition to WNT, PI3K, and MAPK pathway activation. Following the development of radioresistance, transcriptomic data indicated that parental MCF-7 and ZR-751 cell lines changed from a luminal A classification to basal/HER2-overexpressing (MCF-7 RR) and normal-like/HER2-overexpressing (ZR-751 RR). These radioresistant subtypes were similar to the REM-134 and REM-134 RR cell lines, which were classified as HER2-overexpressing. To our knowledge, our study is the first to generate a canine mammary cancer RR cell line model and provide a comparative genetic and phenotypic analysis of the mechanisms of acquired radioresistance between canine and human cancer cell lines. We demonstrate that the cellular processes that occur with the development of acquired radioresistance are similar between the human and canine cell lines; our results therefore suggest that the canine model is appropriate to study both human and canine radioresistant mammary cancers, and that treatment strategies used in human medicine may also be applicable to veterinary patients.

10.
Curr Opin Cell Biol ; 66: 51-58, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32535255

RESUMO

The mammary gland is a highly dynamic tissue that undergoes repeated cycles of growth and involution during pregnancy and menstruation. It is also the site from which breast cancers emerge. Organoids provide an in vitro model that preserves several of the cellular, structural, and microenvironmental features that dictate mammary gland function in vivo and have greatly advanced our understanding of glandular biology. Their tractability for genetic manipulation, live imaging, and high throughput screening have facilitated investigation into the mechanisms of glandular morphogenesis, structural maintenance, tumor progression, and invasion. Opportunities remain to enhance cellular and structural complexity of mammary organoid models, including incorporating additional cell types and hormone signaling.


Assuntos
Neoplasias da Mama/patologia , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Humanas/patologia , Modelos Biológicos , Organoides/patologia , Animais , Feminino , Humanos , Morfogênese
11.
ACS Appl Mater Interfaces ; 10(18): 15369-15380, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29652473

RESUMO

Clinical photosensitizers suffer from the disadvantages of fast photobleaching and high systemic toxicities because of the off-target photodynamic effects. To address these problems, we report a self-assembled pentalysine-phthalocyanine assembly nanodots (PPAN) fabricated by an amphipathic photosensitizer-peptide conjugate. We triggered the photodynamic therapy effects of photosensitizers by precisely controlling the assembly and disintegration of the nanodots. In physiological aqueous conditions, PPAN exhibited a size-tunable spherical conformation with a highly positive shell of the polypeptides and a hydrophobic core of the π-stacking Pc moieties. The assembly conformation suppressed the fluorescence and the reactive oxygen species generation of the monomeric photosensitizer molecules (mono-Pc) and thus declined the photobleaching and off-target photodynamic effects. However, tumor cells disintegrated PPAN and released the mono-Pc molecules, which exhibited fluorescence for detection and the photodynamic effects for the elimination of the tumor tissues. The molecular dynamics simulations revealed the various assembly configurations of PPAN and illustrated the assembly mechanism. At the cellular level, PPAN exhibited a remarkable phototoxicity to breast cancer cells with the IC50 values in a low nanomolar range. By using the subcutaneous and orthotopic breast cancer animal models, we also demonstrated the excellent antitumor efficacies of PPAN in vivo.


Assuntos
Fármacos Fotossensibilizantes/química , Animais , Interações Hidrofóbicas e Hidrofílicas , Neoplasias , Fotodegradação , Fotoquimioterapia
12.
Med Decis Making ; 38(1_suppl): 140S-150S, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29554468

RESUMO

BACKGROUND: The UK Age trial compared annual mammography screening of women ages 40 to 49 years with no screening and found a statistically significant breast cancer mortality reduction at the 10-year follow-up but not at the 17-year follow-up. The objective of this study was to compare the observed Age trial results with the Cancer Intervention and Surveillance Modeling Network (CISNET) breast cancer model predicted results. METHODS: Five established CISNET breast cancer models used data on population demographics, screening attendance, and mammography performance from the Age trial together with extant natural history parameters to project breast cancer incidence and mortality in the control and intervention arm of the trial. RESULTS: The models closely reproduced the effect of annual screening from ages 40 to 49 years on breast cancer incidence. Restricted to breast cancer deaths originating from cancers diagnosed during the intervention phase, the models estimated an average 15% (range across models, 13% to 17%) breast cancer mortality reduction at the 10-year follow-up compared with 25% (95% CI, 3% to 42%) observed in the trial. At the 17-year follow-up, the models predicted 13% (range, 10% to 17%) reduction in breast cancer mortality compared with the non-significant 12% (95% CI, -4% to 26%) in the trial. CONCLUSIONS: The models underestimated the effect of screening on breast cancer mortality at the 10-year follow-up. Overall, the models captured the observed long-term effect of screening from age 40 to 49 years on breast cancer incidence and mortality in the UK Age trial, suggesting that the model structures, input parameters, and assumptions about breast cancer natural history are reasonable for estimating the impact of screening on mortality in this age group.


Assuntos
Neoplasias da Mama/epidemiologia , Medição de Risco/métodos , Adulto , Antineoplásicos/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/epidemiologia , Simulação por Computador , Feminino , Humanos , Incidência , Mamografia , Pessoa de Meia-Idade , Modelos Estatísticos , Mortalidade/tendências , Invasividade Neoplásica/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Reino Unido/epidemiologia , Estados Unidos/epidemiologia
13.
J Pathol Clin Res ; 3(4): 227-233, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29085663

RESUMO

Progesterone receptors (PR) are prognostic and predictive biomarkers in hormone-dependent cancers. Two main PR isoforms have been described, PRB and PRA, that differ only in that PRB has 164 extra N-terminal amino acids. It has been reported that several antibodies empirically exclusively recognize PRA in formalin-fixed paraffin-embedded (FFPE) tissues. To confirm these findings, we used human breast cancer xenograft models, T47D-YA and -YB cells expressing PRA or PRB, respectively, MDA-MB-231 cells modified to synthesize PRB, and MDA-MB-231/iPRAB cells which can bi-inducibly express either PRA or PRB. Cells were injected into immunocompromised mice to generate tumours exclusively expressing PRA or PRB. PR isoform expression was verified using immunoblots. FFPE samples from the same tumours were studied by immunohistochemistry using H-190, clone 636, clone 16, and Ab-6 anti-PR antibodies, the latter exclusively recognizing PRB. Except for Ab-6, all antibodies displayed a similar staining pattern. Our results indicate that clones 16, 636, and the H-190 antibody recognize both PR isoforms. They point to the need for more stringency in evaluating the true specificity of purported PRA-specific antibodies as the PRA/PRB ratio may have prognostic and predictive value in breast cancer.

14.
Breast Cancer Res Treat ; 155(1): 37-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26661596

RESUMO

Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER(+)) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Xenografts of one cell line, 184AA3, consistently formed ER(+) adenocarcinomas that had a high proliferative rate and other features consistent with "luminal B" intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44(High) subpopulation was discovered, yet their tumor forming ability was far less than CD44(Low) cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER(+) cancers. This model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing, and drug development.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptores de Estrogênio/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Am J Reprod Immunol ; 72(5): 435-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25041579

RESUMO

PROBLEM: The CD200-tolerance signaling molecule prevents pregnancy failure and is also expressed by a wide variety of malignant tumors. The effect of CD200 mRNA expression on progression of human tumors has been variable. METHOD OF STUDY: A cross-sectional study was performed to examine the correlation between CD200 protein expression in the primary tumors from postoperative Stage I-IIIA human breast cancer and the likelihood of regional lymph node metastasis. RESULTS: Fifty-eight percentage of patients had strong CD200(+) tumor staining (71% of Stage I and 53% Stage II-IIIA). Strong staining was associated with large T2-3 primary tumors compared to T1 tumors (64 versus 50%) and T2-3 N(+) versus T1 N(-) tumors (70 versus 63%), but this was not statistically significant. Nodal metastases were not more frequent in patients with strong CD200(+) staining (57% compared to 58% for weak/negative staining cases), and the metastatic tumor cells in regional lymph nodes were often CD200(-) when the primary tumor was CD200(+). CONCLUSION: CD200 expression by early-stage human breast cancer cells in primary tumors did not correlate with increased regional lymph node metastasis.


Assuntos
Antígenos CD/imunologia , Neoplasias da Mama/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Proteínas de Neoplasias/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Feminino , Células HEK293 , Humanos , Metástase Linfática , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Gravidez
16.
Curr Protoc Mouse Biol ; 3(1): 21-9, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26069021

RESUMO

Patient-derived xenograft (PDX) models of human breast cancer are proving useful for preclinical evaluation of experimental therapeutics. However, until recently, generation of PDX models reflecting the full spectrum of human breast cancers has been an elusive goal. We recently developed a method for establishing serially transplantable, phenotypically stable, human breast cancer xenograft models in immunocompromised mice with comparatively high efficiency (overall ∼25%). These xenografts represent the major clinically defined subtypes of breast cancer [e.g. estrogen receptor positive (ER+), HER2 positive (HER2+), and "triple negative" (TN) breast cancers]. This method, and methods being developed in other laboratories, may soon allow for conducting "animal clinical trials" once sufficient numbers of clinically relevant models are generated. Curr. Protoc. Mouse Biol. 3:21-29 © 2013 by John Wiley & Sons, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA