Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rep ; 12(11): e16057, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825580

RESUMO

The bronchoalveolar organoid (BAO) model is increasingly acknowledged as an ex-vivo platform that accurately emulates the structural and functional attributes of proximal airway tissue. The transition from bronchoalveolar progenitor cells to alveolar organoids is a common event during the generation of BAOs. However, there is a pressing need for comprehensive analysis to elucidate the molecular distinctions characterizing the pre-differentiated and post-differentiated states within BAO models. This study established a murine BAO model and subsequently triggered its differentiation. Thereafter, a suite of multidimensional analytical procedures was employed, including the morphological recognition and examination of organoids utilizing an established artificial intelligence (AI) image tracking system, quantification of cellular composition, proteomic profiling and immunoblots of selected proteins. Our investigation yielded a detailed evaluation of the morphologic, cellular, and molecular variances demarcating the pre- and post-differentiation phases of the BAO model. We also identified of a potential molecular signature reflective of the observed morphological transformations. The integration of cutting-edge AI-driven image analysis with traditional cellular and molecular investigative methods has illuminated key features of this nascent model.


Assuntos
Diferenciação Celular , Organoides , Organoides/metabolismo , Organoides/citologia , Animais , Camundongos , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Inteligência Artificial , Proteômica/métodos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA