Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Ther Apher Dial ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39229751

RESUMO

INTRODUCTION: Recent studies have identified increased blood calciprotein particle (CPP) levels as risk factors for vascular calcification and cardiovascular events in patients undergoing maintenance hemodialysis. Although positively correlated with serum phosphate levels, serum CPP levels vary considerably among patients with similar serum phosphate levels. We investigated the capacity of the ratio of serum CPP levels to serum phosphate levels (CPP/Pi ratio) to predict cardiovascular events in incident hemodialysis patients compared to the serum calcification propensity test (T50). METHODS AND RESULTS: The association between the CPP/Pi ratio and major adverse cardiac and cerebrovascular events (MACCE) was investigated in 174 incident hemodialysis patients. Multivariate analysis revealed that the CPP/Pi ratio was independently associated with MACCE [hazard ratio 1.60, 95% confidence interval (1.15-2.23), p = 0.006] but serum T50 levels were not. CONCLUSIONS: The CPP/Pi ratio is a useful, novel biomarker for predicting the risk of cardiovascular events in patients undergoing incident hemodialysis.

2.
Calcif Tissue Int ; 115(3): 315-327, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38951181

RESUMO

Vascular calcification affects the prognosis of patients with renal failure. Bisphosphonates are regarded as candidate anti-calcifying drugs because of their inhibitory effects on both calcium-phosphate aggregation and bone resorption. However, calcification in well-known rodent models is dependent upon bone resorption accompanied by excessive bone turnover, making it difficult to estimate accurately the anti-calcifying potential of drugs. Therefore, models with low bone resorption are required to extrapolate anti-calcifying effects to humans. Three bisphosphonates (etidronate, alendronate, and FYB-931) were characterised for their inhibitory effects on bone resorption in vivo and calcium-phosphate aggregation estimated by calciprotein particle formation in vitro. Then, their effects were examined using two models inducing ectopic calcification: the site where lead acetate was subcutaneously injected into mice and the transplanted, aorta obtained from a donor rat. The inhibitory effects of bisphosphonates on bone resorption and calcium-phosphate aggregation were alendronate > FYB-931 > etidronate and FYB-931 > alendronate = etidronate, respectively. In the lead acetate-induced model, calcification was most potently suppressed by FYB-931, followed by alendronate and etidronate. In the aorta-transplanted model, only FYB-931 suppressed calcification at a high dose. In both the models, no correlation was observed between calcification and bone resorption marker, tartrate-resistant acid phosphatase (TRACP). Results from the lead acetate-induced model showed that inhibitory potency against calcium-phosphate aggregation contributed to calcification inhibition. The two calcification models, especially the lead acetate-induced model, may be ideal for the extrapolation of calcifying response to humans because of calcium-phosphate aggregation rather than bone resorption as its mechanism.


Assuntos
Reabsorção Óssea , Modelos Animais de Doenças , Compostos Organometálicos , Animais , Camundongos , Humanos , Compostos Organometálicos/farmacologia , Ratos , Difosfonatos/farmacologia , Masculino , Conservadores da Densidade Óssea/farmacologia , Alendronato/farmacologia , Calcinose/induzido quimicamente , Camundongos Endogâmicos C57BL , Calcificação Vascular/induzido quimicamente
3.
Calcif Tissue Int ; 113(2): 216-228, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37099142

RESUMO

Patients with chronic kidney disease develop vascular calcification, owing to impaired calcium and phosphate metabolism. The prevention of vascular calcification is important to improve the prognosis of such patients. In this study, we investigated whether treatment with FYB-931, a novel bisphosphonate compound, prevents vascular calcification in rat aortic rings cultured in high-phosphate medium for 9 days, assessed by measurement of the calcium content and the degree of calcium deposition, visualized using von Kossa staining. The effect on the transformation of calciprotein particles (CPPs) from primary to secondary CPPs was assessed using a fluorescent probe-based flow cytometric assay. FYB-931 dose-dependently prevented high phosphate-induced aortic calcification, but failed to rapidly cause the regression of high phosphate-induced vascular calcification once it had developed. Furthermore, the treatment dose-dependently inhibited the high phosphate-induced transformation from primary to secondary CPPs. In addition, the treatment with FYB-931 prevented the transformation from primary to secondary CPPs in vitamin D3-treated rats as a model of ectopic calcification, consistent with the results from rat aortic rings. In conclusion, treatment with FYB-931 prevents high phosphate-induced rat aortic vascular calcification by altering the dynamics of CPP transformation. This finding suggests that inhibition of the transformation from primary to secondary CPPs is an important target for the prevention of vascular calcification in patients with chronic kidney disease.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Ratos , Animais , Cálcio/metabolismo , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/prevenção & controle , Calcificação Vascular/complicações , Difosfonatos , Insuficiência Renal Crônica/complicações , Fosfatos
4.
J Nephrol ; 36(2): 367-376, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36261704

RESUMO

BACKGROUND: Progression of aortic calcification is associated with all-cause and cardiovascular mortality in hemodialysis patients. Blood calciprotein particle (CPP) levels are associated with coronary artery calcification and were reported to be inhibited when using citric acid-based bicarbonate dialysate (CD). Therefore, this study aimed to examine the effect of CD on the progression of the aortic arch calcification score (AoACS) and blood CPP levels in hemodialysis patients. METHODS: A 12-month retrospective observational study of 262 hemodialysis patients was conducted. AoACS was evaluated by calculating the number of calcifications in 16 segments of the aortic arch on chest X-ray (minimum score is 0; maximum score is 16 points). The patients were divided into the following groups according to their baseline AoACS: grade 0, AoACS = 0 points; grade 1, AoACS 1-4 points; grade 2, AoACS 5-8 points; grade 3, AoACS 9 points or higher. Patients on bisphosphonates or warfarin or with AoACS grade 3 were excluded. Progression, defined as ΔAoACS (12-month score - baseline score) > 0 points, was compared between the CD and acetic acid-based bicarbonate dialysate (AD) groups before and after adjusting the background using propensity score matching. RESULTS: The AoACS progression rate was significantly lower in the CD group than in the AD group (before matching: P = 0.020, after matching: P = 0.002). Multivariate logistic regression analysis showed that CD was significantly associated with AoACS progression (odds ratio 0.52, 95% confidence interval 0.29‒0.92, P = 0.025). CONCLUSION: CD may slow the progression of vascular calcification in hemodialysis patients.


Assuntos
Bicarbonatos , Calcificação Vascular , Humanos , Soluções para Diálise , Aorta Torácica/diagnóstico por imagem , Ácido Cítrico , Diálise Renal/efeitos adversos , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/etiologia , Calcificação Vascular/prevenção & controle
5.
Hypertens Res ; 45(5): 900-910, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35241816

RESUMO

Calciprotein particles (CPPs) are tiny mineral-protein aggregates consisting of calcium-phosphate and fetuin-A. Recent studies have suggested that CPPs may contribute to the pathogenesis of chronic inflammation and arteriosclerosis. Reduced skeletal muscle mass and strength reportedly contribute independently to increased serum phosphate levels. This finding suggests that reduced skeletal muscle mass and strength can endogenously induce an increase in circulating CPP levels. Therefore, we investigated the potential association between circulating CPP levels and skeletal muscle mass and strength in middle-aged and older adults. One hundred eighty-two middle-aged and older adults (age, 46-83 years) were included in this cross-sectional study (UMIN000034741). Circulating CPP levels were measured using the gel filtration method. Appendicular skeletal muscle mass was assessed using multifrequency bioelectrical impedance analysis with a tetrapolar eight-point tactile electrode system. The skeletal muscle mass index was calculated from appendicular skeletal muscle mass and height. Handgrip and knee extension strengths were used as measures of skeletal muscle strength. The skeletal muscle mass index was negatively correlated with circulating CPP levels (r = -0.31; P < 0.05). This association remained significant after adjustment for potential covariates (ß = -0.34; P < 0.05). In contrast, skeletal muscle strength, represented by handgrip strength and knee extension strength, was not significantly associated with circulating CPP levels. In middle-aged and older adults, a lower skeletal muscle mass index was independently associated with higher circulating CPP levels. The present results suggest that maintaining skeletal muscle mass may prevent an increase in circulating CPP levels.


Assuntos
Força da Mão , Músculo Esquelético , Idoso , Idoso de 80 Anos ou mais , Estatura , Estudos Transversais , Força da Mão/fisiologia , Humanos , Pessoa de Meia-Idade , Força Muscular/fisiologia , Músculo Esquelético/fisiologia
6.
Front Physiol ; 13: 1078569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685206

RESUMO

The calcium-sensing receptor (CaSR) is expressed in many cell types - including immune cells and in particular circulating monocytes. Here, the receptor plays an important physiological role as a regulator of constitutive macropinocytosis. This review article provides an overview of the literature on the role of the calcium sensing receptor in the context of inflammatory processes. Special emphasis is laid upon the importance for monocytes in the context of rheumatoid arthritis. We have shown previously, that stimulation of the receptor by increased extracellular Ca2+ ([Ca2+]ex) triggers a pro-inflammatory response due to NLRP3 inflammasome assembly and interleukin (IL)-1ß release. The underlying mechanism includes macropinocytosis of calciprotein particles (CPPs), which are taken up in a [Ca2+]ex-induced, CaSR dependent manner, and leads to strong IL-1ß release. In rheumatoid arthritis (RA), this uptake and the resulting IL-1ß release is significantly increased due to increased expression of the receptor. Moreover, increased [Ca2+]ex-induced CPP uptake and IL-1ß release is associated with more active disease, while CaSR overexpression has been reported to be associated with cardiovascular complications of RA. Most importantly, however, in animal experiments with arthritic mice, increased local calcium concentrations are present, which in combination with release of fetuin-A from eroded bone could contribute to formation of CPPs. We propose, that increased [Ca2+]ex, CPPs and pro-inflammatory cytokines drive a vicious cycle of inflammation and bone destruction which in turn offers new potential therapeutic approaches.

7.
Nephrol Dial Transplant ; 37(3): 421-429, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33374019

RESUMO

Vascular calcification is a prognostic marker for cardiovascular mortality in chronic kidney disease (CKD) patients. In these patients, magnesium balance is disturbed, mainly due to limited ultrafiltration of this mineral, changes in dietary intake and the use of diuretics. Observational studies in dialysis patients report that a higher blood magnesium concentration is associated with reduced risk to develop vascular calcification. Magnesium prevents osteogenic vascular smooth muscle cell transdifferentiation in in vitro and in vivo models. In addition, recent studies show that magnesium prevents calciprotein particle maturation, which may be the mechanism underlying the anti-calcification properties of magnesium. Magnesium is an essential protective factor in the calcification milieu, which helps to restore the mineral-buffering system that is overwhelmed by phosphate in CKD patients. The recognition that magnesium is a modifier of calciprotein particle maturation and mineralization of the extracellular matrix renders it a promising novel clinical tool to treat vascular calcification in CKD. Consequently, the optimal serum magnesium concentration for patients with CKD may be higher than in the general population.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Magnésio/uso terapêutico , Fosfatos/uso terapêutico , Diálise Renal , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Calcificação Vascular/etiologia , Calcificação Vascular/prevenção & controle
8.
Front Cell Dev Biol ; 9: 633925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996793

RESUMO

BACKGROUND: The liver-derived plasma protein fetuin A is a systemic inhibitor of ectopic calcification. Fetuin-A stabilizes calcium phosphate mineral initially as ion clusters to form calciprotein monomers (CPM), and then as larger multimeric consolidations containing amorphous calcium phosphate (primary CPP, CPP 1) or more crystalline phases (secondary CPP, CPP 2). CPM and CPP mediate excess mineral stabilization, transport and clearance from circulation. METHODS: We injected i.v. synthetic fluorescent CPM and studied their clearance by live two-photon microscopy. We analyzed organ sections by fluorescence microscopy to assess CPM distribution. We studied cellular clearance and cytotoxicity by flow cytometry and live/dead staining, respectively, in cultured macrophages, liver sinusoidal endothelial cells (LSEC), and human proximal tubule epithelial HK-2 cells. Inflammasome activation was scored in macrophages. Fetuin A monomer and CPM charge were analyzed by ion exchange chromatography. RESULTS: Live mice cleared CPP in the liver as published previously. In contrast, CPM were filtered by kidney glomeruli into the Bowman space and the proximal tubules, suggesting tubular excretion of CPM-bound calcium phosphate and reabsorption of fetuin A. Fetuin-A monomer clearance was negligible in liver and low in kidney. Anion exchange chromatography revealed that fetuin A monomer was negatively charged, whereas CPM appeared neutral, suggesting electrochemical selectivity of CPM versus fetuin A. CPM were non-toxic in any of the investigated cell types, whereas CPP 1 were cytotoxic. Unlike CPP, CPM also did not activate the inflammasome. CONCLUSIONS: Fetuin-A prevents calcium phosphate precipitation by forming CPM, which transform into CPP. Unlike CPP, CPM do not trigger inflammation. CPM are readily cleared in the kidneys, suggesting CPM as a physiological transporter of excess calcium and phosphate. Upon prolonged circulation, e.g., in chronic kidney disease, CPM will coalesce and form CPP, which cannot be cleared by the kidney, but will be endocytosed by liver sinusoidal endothelial cells and macrophages. Large amounts of CPP trigger inflammation. Chronic CPM and CPP clearance deficiency thus cause calcification by CPP deposition in blood vessels and soft tissues, as well as inflammation.

9.
J Pharm Pharmacol ; 73(7): 947-955, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33882129

RESUMO

OBJECTIVE: Ectopic calcification such as vascular calcification, involves the formation of calciprotein particle (CPP), that is, colloidal particle of calcium phosphate bound to serum protein. In this study, a novel parameter for CPP formation was introduced, thereby the effect of FYB-931, a bisphosphonate compound was evaluated. METHODS: CPP formation in rat serum was assessed by the area under the curve (AUC) of the change in absorbance over time, and the commonly used T50, as indices. In vivo, the rats were treated with vitamin D3 to induce vascular calcification and then intravenously administered FYB-931 or etidronate thrice weekly for 2 weeks. KEY FINDINGS: In vitro, FYB-931 was the most potent inhibitor of CPP formation and it also inhibited the maximum response of CPP formation at higher concentrations. The AUC of the change in absorbance provided obvious dose-dependency, while T50 did not. FYB-931 dose-dependently prevented aortic calcification in vivo as well as CPP formation ex vivo more potently than etidronate. AUC showed a stronger correlation with the degree of aortic calcification than T50. CONCLUSIONS: The AUC in CPP formation can be an alternative parameter that reflects calcification. Based on the findings, FYB-931 has potential as an anti-calcifying agent.


Assuntos
Fosfatos de Cálcio , Difosfonatos/farmacologia , Calcificação Vascular/tratamento farmacológico , Animais , Área Sob a Curva , Fosfatos de Cálcio/sangue , Fosfatos de Cálcio/metabolismo , Hormônios e Agentes Reguladores de Cálcio/farmacologia , Coloides , Relação Dose-Resposta a Droga , Ácido Etidrônico/farmacologia , Ratos , Resultado do Tratamento , Calcificação Vascular/metabolismo
10.
Am J Kidney Dis ; 77(3): 346-354, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32800846

RESUMO

RATIONALE & OBJECTIVE: Characteristics of the transformation of primary to secondary calciprotein particles (CPPs) in serum, including the size of secondary CPP (CPP2) aggregates and the time of transformation (T50), may be markers for arterial calcification in patients undergoing hemodialysis (HD). We examined the associations of CPP2 aggregate size and T50 with arterial calcification in incident HD patients. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: Incident HD patients (n=402with available CPP2 measures and n=388with available T50 measures) from the Predictors of Arrhythmic and Cardiovascular Risk in End-Stage Renal Disease (PACE) Study PREDICTORS: Serum CPP2 size and T50 at baseline. OUTCOMES: Primary outcomes were baseline coronary artery and thoracic aorta calcifications. Exploratory outcomes included baseline arterial stiffness, measured by pulse wave velocity (PWV) and ankle brachial index, and longitudinally, repeat measures of PWV and all-cause mortality. ANALYTICAL APPROACH: Tobit regression, multiple linear regression, Poisson regression, linear mixed-effects regression, and Cox proportional hazards regression. RESULTS: Mean age was 55±13 years, 41% were women, 71% were Black, and 57% had diabetes mellitus. Baseline CPP2 size and T50 were correlated with baseline fetuin A level (r=-0.59 for CPP2 and 0.44 for T50; P<0.001 for both), but neither was associated with baseline measures of arterial calcification or arterial stiffness. Baseline CPP2 size and T50 were not associated with repeat measures of PWV. During a median follow-up of 3.5 (IQR, 1.7-6.2) years, larger CPP2 was associated with higher risk for mortality (HR, 1.17 [95% CI, 1.05-1.31] per 100nm larger CPP2 size) after adjusting for demographics and comorbid conditions, but there was no association between baseline T50 and risk for mortality. LIMITATIONS: Possible imprecision in assays, small sample size, limited generalizability to incident HD populations with different racial composition, and residual confounding. CONCLUSIONS: In incident HD patients, neither CPP2 size nor T50 was associated with prevalent arterial calcification and stiffness. Larger CPP2 was associated with risk for mortality, but this finding needs to be confirmed in future studies.


Assuntos
Fosfatos de Cálcio/metabolismo , Falência Renal Crônica/terapia , Mortalidade , Tamanho da Partícula , Diálise Renal , Calcificação Vascular/metabolismo , Rigidez Vascular/fisiologia , alfa-2-Glicoproteína-HS/metabolismo , Adulto , Idoso , Índice Tornozelo-Braço , Doenças da Aorta/metabolismo , Doenças da Aorta/fisiopatologia , Estudos de Coortes , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Feminino , Humanos , Falência Renal Crônica/metabolismo , Modelos Lineares , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Nanopartículas , Modelos de Riscos Proporcionais , Estudos Prospectivos , Análise de Onda de Pulso , Fatores de Tempo , Calcificação Vascular/fisiopatologia
11.
Atherosclerosis ; 303: 46-52, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307113

RESUMO

BACKGROUND AND AIMS: Calciprotein particles (CPPs), nano-aggregates containing fetuin-A-bound calcium-phosphate, are associated with aortic stiffness and coronary calcification in maintenance hemodialysis patients. A novel gel-filtration assay can detect low-density small CPPs, which are actually a major form of circulating CPPs in vivo. We sought to investigate whether circulating CPP levels measured by gel-filtration method would accurately predict hard endpoints in maintenance hemodialysis patients. METHODS: This study used a prospective, multicenter, longitudinal, and observational design. One-hundred eight patients enrolled in this study were followed-up for about 2 years. We reported all-cause death and cardiovascular events, which included major adverse cardiac, cerebrovascular, and limb events. RESULTS: Kaplan-Meier analysis showed no significant difference between patients with the higher (>median) and lower (

Assuntos
Calcinose , Diálise Renal , Rigidez Vascular , Fosfatos de Cálcio , Humanos , Modelos de Riscos Proporcionais , Estudos Prospectivos , alfa-2-Glicoproteína-HS
12.
Nephrol Dial Transplant ; 35(5): 765-773, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605492

RESUMO

BACKGROUND: Phosphate (Pi) toxicity is a strong determinant of vascular calcification development in chronic kidney disease (CKD). Magnesium (Mg2+) may improve cardiovascular risk via vascular calcification. The mechanism by which Mg2+ counteracts vascular calcification remains incompletely described. Here we investigated the effects of Mg2+ on Pi and secondary crystalline calciprotein particles (CPP2)-induced calcification and crystal maturation. METHODS: Vascular smooth muscle cells (VSMCs) were treated with high Pi or CPP2 and supplemented with Mg2+ to study cellular calcification. The effect of Mg2+ on CPP maturation, morphology and composition was studied by medium absorbance, electron microscopy and energy dispersive spectroscopy. To translate our findings to CKD patients, the effects of Mg2+ on calcification propensity (T50) were measured in sera from CKD patients and healthy controls. RESULTS: Mg2+ supplementation prevented Pi-induced calcification in VSMCs. Mg2+ dose-dependently delayed the maturation of primary CPP1 to CPP2 in vitro. Mg2+ did not prevent calcification and associated gene and protein expression when added to already formed CPP2. Confirmatory experiments in human serum demonstrated that the addition of 0.2 mmol/L Mg2+ increased T50 from healthy controls by 51 ± 15 min (P < 0.05) and CKD patients by 44 ± 13 min (P < 0.05). Each further 0.2 mmol/L addition of Mg2+ led to further increases in both groups. CONCLUSIONS: Our results demonstrate that crystalline CPP2 mediates Pi-induced calcification in VSMCs. In vitro, Mg2+ delays crystalline CPP2 formation and thereby prevents Pi-induced calcification.


Assuntos
Fosfatos de Cálcio/metabolismo , Suplementos Nutricionais , Magnésio/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Calcificação Vascular/prevenção & controle , alfa-2-Glicoproteína-HS/metabolismo , Células Cultivadas , Humanos , Miócitos de Músculo Liso/metabolismo , Calcificação Vascular/metabolismo
13.
Nutrients ; 11(1)2019 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-30642029

RESUMO

Vascular calcification is a critical complication in patients with chronic kidney disease (CKD) because it is predictive of cardiovascular events and mortality. In addition to the traditional mechanisms associated with endothelial dysfunction and the osteoblastic transformation of vascular smooth muscle cells (VSMCs), the regulation of calcification inhibitors, such as calciprotein particles (CPPs) and matrix vesicles plays a vital role in uremic vascular calcification in CKD patients because of the high prevalence of vitamin K deficiency. Vitamin K governs the gamma-carboxylation of matrix Gla protein (MGP) for inhibiting vascular calcification, and the vitamin D binding protein receptor is related to vitamin K gene expression. For patients with chronic kidney disease, adequate use of vitamin D supplements may play a role in vascular calcification through modulation of the calciprotein particles and matrix vesicles (MVs).


Assuntos
Insuficiência Renal Crônica/tratamento farmacológico , Calcificação Vascular/tratamento farmacológico , Vitamina D/farmacologia , Vitamina K/farmacologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Suplementos Nutricionais , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Hiperfosfatemia/sangue , Hiperfosfatemia/tratamento farmacológico , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/complicações , Calcificação Vascular/sangue , Calcificação Vascular/etiologia , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina K/sangue , Deficiência de Vitamina K/tratamento farmacológico , Proteína de Matriz Gla
14.
Nephrol Dial Transplant ; 34(6): 992-1000, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788425

RESUMO

BACKGROUND: The size of secondary calciprotein particles (CPP2) and the speed of transformation (T50) from primary calciprotein particles (CPP1) to CPP2 in serum may be associated with vascular calcification (VC) in patients with chronic kidney disease (CKD). METHODS: We developed a high throughput, microplate-based assay using dynamic light scattering (DLS) to measure the transformation of CPP1 to CPP2, hydrodynamic radius (Rh) of CPP1 and CPP2, T50 and aggregation of CPP2. We used this DLS assay to test the hypothesis that a large Rh of CPP2 and/or a fast T50 are associated with VC in 45 participants with CKD Stages 4-5 (22 without VC and 23 with VC) and 17 healthy volunteers (HV). VC was defined as a Kauppila score >6 or an Adragao score ≥3. RESULTS: CKD participants with VC had larger cumulants Rh of CPP2 {370 nm [interquartile range (IQR) 272-566]} compared with CKD participants without VC [212 nm (IQR 169-315)] and compared with HV [168 nm (IQR 145-352), P < 0.01 for each]. More CPP2 were in aggregates in CKD participants with VC than those without VC (70% versus 36%). The odds of having VC increased by 9% with every 10 nm increase in the Rh of CPP2, after adjusting for age, diabetes, serum calcium and phosphate [odds ratio 1.09, 95% confidence interval (CI) 1.03, 1.16, P = 0.005]. The area under the receiver operating characteristic curve for VC of CPP2 size was 0.75 (95% CI 0.60, 0.90). T50 was similar in CKD participants with and without VC, although both groups had a lower T50 than HV. CONCLUSIONS: Rh of CPP2, but not T50, is independently associated with VC in patients with CKD Stages 4-5.


Assuntos
Cálcio/sangue , Fosfatos/sangue , Fotometria/métodos , Insuficiência Renal Crônica/sangue , Calcificação Vascular/sangue , Adulto , Estudos Transversais , Diabetes Mellitus , Feminino , Taxa de Filtração Glomerular , Humanos , Hidrodinâmica , Luz , Masculino , Pessoa de Meia-Idade , Razão de Chances , Análise de Regressão , Insuficiência Renal Crônica/complicações , Espalhamento de Radiação , Calcificação Vascular/complicações , Adulto Jovem
15.
Front Immunol ; 9: 1991, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233585

RESUMO

Background: The liver-derived plasma protein fetuin-A is a systemic inhibitor of ectopic calcification. Fetuin-A stabilizes saturated mineral solutions by forming colloidal protein-mineral complexes called calciprotein particles (CPP). CPP are initially spherical, amorphous and soft, and are referred to as primary CPP. These particles spontaneously convert into secondary CPP, which are larger, oblongate, more crystalline, and less soluble. CPP mediate excess mineral transport and clearance from circulation. Methods: We studied by intravital two-photon microscopy the clearance of primary vs. secondary CPP by injecting i.v. synthetic fluorescent CPP in mice. We analyzed CPP organ distribution and identified CPP endocytosing cells by immunofluorescence. Cellular clearance was studied using bone marrow-derived mouse wildtype and scavenger receptor A (SRA)-deficient macrophages, as well as human umbilical cord endothelial cells (HUVEC), monocyte-derived macrophages (hMDM), and human aortic endothelial cells (haEC). We employed mouse wildtype and mutant immortalized macrophages to analyze CPP-induced inflammasome activation and cytokine secretion. Results: In live mice, only primary CPP were rapidly cleared by liver sinusoidal endothelial cells (LSEC), whereas primary and secondary CPP were cleared by Kupffer cells. Scavenger receptor A (SRA)-deficient bone marrow macrophages endocytosed secondary CPP less well than did wildtype macrophages. In contrast, primary CPP endocytosis did not depend on the presence of SRA, suggesting involvement of an alternative clearance pathway. CPP triggered TLR4 dependent TNFα and IL-1ß secretion in cultured macrophages. Calcium content-matched primary CPP caused twice more IL-1ß secretion than did secondary CPP, which was associated with increased calcium-dependent inflammasome activation, suggesting that intracellular CPP dissolution and calcium overload may cause this inflammation. Conclusions: Secondary CPP are endocytosed by macrophages in liver and spleen via SRA. In contrast, our results suggest that primary CPP are cleared by LSEC via an alternative pathway. CPP induced TLR4-dependent TNFα and inflammasome-dependent IL-1ß secretion in macrophages suggesting that inflammation and calcification may be considered consequences of prolonged CPP presence and clearance.


Assuntos
Cálcio/metabolismo , Células Endoteliais/fisiologia , Células de Kupffer/fisiologia , Macrófagos/fisiologia , Complexos Multiproteicos/metabolismo , Nanopartículas/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Calcinose , Cálcio/química , Coloides/química , Cristalização , Citocinas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamassomos/metabolismo , Microscopia Intravital , Camundongos , Minerais/química , Complexos Multiproteicos/química , Nanopartículas/química , Fagocitose , Insuficiência Renal Crônica/patologia , Receptores Depuradores Classe A/metabolismo , Solubilidade , alfa-2-Glicoproteína-HS/metabolismo
16.
Kidney Int Suppl (2011) ; 3(5): 420-426, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25019024

RESUMO

Extracellular phosphate is toxic to the cell at high concentrations. When the phosphate level is increased in the blood by impaired urinary phosphate excretion, premature aging ensues. When the phosphate level is increased in the urine by dietary phosphate overload, this may lead to kidney damage (tubular injury and interstitial fibrosis). Extracellular phosphate exerts its cytotoxicity when it forms insoluble nanoparticles with calcium and fetuin-A, referred to as calciprotein particles (CPPs). CPPs are highly bioactive ligands that can induce various cellular responses, including osteogenic transformation of vascular smooth muscle cells and cell death in vascular endothelium and renal tubular epithelium. CPPs are detected in the blood of animal models and patients with chronic kidney disease (CKD) and associated with adaptation of the endocrine axes mediated by fibroblast growth factor-23 (FGF23) and Klotho that regulate mineral metabolism and aging. These observations have raised the possibility that CPPs may contribute to the pathophysiology of CKD. This notion, if validated, is expected to provide new diagnostic and therapeutic targets for CKD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA