Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Talanta ; 278: 126480, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38972275

RESUMO

The prevalence of metabolic disorders has been found to increase concomitantly with alternations in habitual diet and lifestyle, indicating the importance of metabolic health monitoring for early warning of high-risk status and suggesting effective intervention strategies. Hippuric acid (HA), as one of the most abundant metabolites from the gut microbiota, holds potential as a regulator of metabolic health. Accordingly, it is imperative to establish an efficient, sensitive, and affordable method for large-scale population monitoring, revealing the association between HA level and metabolic disorders. Upon systematic screening of macrocycle•dye reporter pair, a supramolecular architecture (guanidinomethyl-modified calix[5]arene, GMC5A) was employed to sense urinary HA by employing fluorescein (Fl), whose complexation behavior was demonstrated by theoretical calculations, accomplishing quantification of HA in urine from 249 volunteers in the range of 0.10 mM and 10.93 mM. Excitedly, by restricted cubic spline, urinary HA concentration was found to have a significantly negative correlation with the risk of metabolic disorders when it exceeded 0.76 mM, suggesting the importance of dietary habits, especially the consumption of fruits, coffee, and tea, which was unveiled from a simple questionnaire survey. In this study, we accomplished a high throughput and sensitive detection of urinary HA based on supramolecular sensing with the GMC5A•Fl reporter pair, which sheds light on the rapid quantification of urinary HA as an indicator of metabolic health status and early intervention by balancing the daily diet.

2.
Chemistry ; : e202401490, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016691

RESUMO

As a novel synthetic method for unsymmetrical macrocycles, we herein developed a post-synthetic modification of calix[4]arenes by insertion of a terminal alkyne into an inert C(methylene)-C(aryl) bond of the macrocyclic framework. In this transformation, C-iridated calix[4]arenes, readily synthesized through C-H bond activation of the parent calix[4]arene, undergoes C(methylene)-C(aryl) bond cleavage followed by insertion of an alkyne to provide a ring-expanded calix[4]arene complex. Removal of the iridium metal from the resulting complex was readily accomplished by a simple treatment with an acid. The developed sequential method affords novel unsymmetrical, monofunctionalized macrocyclic compounds via 3 steps from the parent calix[4]arene in good yield. The unique unsymmetrical structures of the alkyne-inserted macrocycles were evaluated by X-ray single crystal analyses. On the basis of theoretical calculations, we propose a reaction mechanism involving an uncommon C-C bond cleavage step through δ-carbon elimination for the ring enlargement process.

3.
Sensors (Basel) ; 24(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931527

RESUMO

The identification and detection of pesticides is crucial to protecting both the environment and human health. However, it can be challenging to conveniently and rapidly differentiate between different types of pesticides. We developed a supramolecular fluorescent sensor array, in which calixarenes with broad-spectrum encapsulation capacity served as recognition receptors. The sensor array exhibits distinct fluorescence change patterns for seven tested pesticides, encompassing herbicides, insecticides, and fungicides. With a reaction time of just three minutes, the sensor array proves to be a rapid and efficient tool for the discrimination of pesticides. Furthermore, this supramolecular sensing approach can be easily extended to enable real-time and on-site visual detection of varying concentrations of imazalil using a smartphone with a color scanning application. This work not only provides a simple and effective method for pesticide identification and quantification, but also offers a versatile and advantageous platform for the recognition of other analytes in relevant fields.


Assuntos
Calixarenos , Praguicidas , Calixarenos/química , Praguicidas/análise , Técnicas Biossensoriais/métodos , Smartphone , Espectrometria de Fluorescência/métodos
4.
Chemistry ; : e202400871, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777795

RESUMO

Calixarenes are displaying great potential for the development of new drug delivery systems, diagnostic imaging, biosensing devices and inhibitors of biological processes. In particular, calixarene derivatives are able to interact with many different enzymes and function as inhibitors. By screening of the potential drug target database (PDTD) with a reverse docking procedure, we identify and discuss a selection of 100 proteins that interact strongly with calix[4]arene. We also discover that leucine (23.5 %), isoleucine (11.3 %), phenylalanines (11.3 %) and valine (9.5 %) are the most frequent binding residues followed by hydrophobic cysteines and methionines and aromatic histidines, tyrosines and tryptophanes. Top binders are peroxisome proliferator-activated receptors that already are targeted by commercial drugs, demonstrating the practical interest in calix[4]arene. Nuclear receptors, potassium channel, several carrier proteins, a variety of cancer-related proteins and viral proteins are prominent in the list. It is concluded that calix[4]arene, which is characterized by facile access, well-defined conformational characteristics, and ease of functionalization at both the lower and higher rims, could be a potential lead compound for the development of enzyme inhibitors and theranostic platforms.

5.
Chemistry ; 30(34): e202400947, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38622630

RESUMO

Two crystalline large-sized porous organic cages (POCs) based on conical calix[4]arene (C4A) were designed and synthesized. The four-jaw C4A unit tends to follow the face-directed self-assembly law with the planar triangular building blocks such as tris(4-aminophenyl)amine (TAPA) or 1,3,5-tris(4-aminophenyl)benzene (TAPB) to generate a predictable cage with a stoichiometry of [6+8]. The formation of the large cages is confirmed through their relative molecular mass measured using MALDI-TOF/TOF spectra. The protonated molecular ion peaks of C4A-TAPA and C4A-TAPB were observed at m/z 5109.0 (calculated for C336H240O24N32: m/z 5109.7) and m/z 5594.2 (calculated for C384H264O24N24: m/z 5598.4). C4A-POCs exhibit I-type N2 adsorption-desorption isotherms with the BET surface areas of 1444.9 m2 ⋅ g-1 and 1014.6 m2 ⋅ g-1. The CO2 uptakes at 273 K are 62.1 cm3 ⋅ g-1 and 52.4 cm3 ⋅ g-1 at a pressure of 100 KPa. The saturated iodine vapor static uptakes at 348 K are 3.9 g ⋅ g-1 and 3.5 g ⋅ g-1. The adsorption capacity of C4A-TAPA for SO2 reaches to 124.4 cm3 ⋅ g-1 at 298 K and 1.3 bar. Additionally, the adsorption capacities of C4A-TAPA for C2H2, C2H4, and C2H6 were evaluated.

6.
J Control Release ; 368: 691-702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492860

RESUMO

Host-guest drug delivery systems (HGDDSs) provided a facile method for incorporating biomedical functions, including efficient drug-loading, passive targeting, and controlled drug release. However, developing HGDDSs with active targeting is hindered by the difficult functionalization of popular macrocycles. Herein, we report an active targeting HGDDS based on biotin-modified sulfonated azocalix[4]arene (Biotin-SAC4A) to efficiently deliver drug into cancer cells for improving anti-tumor effect. Biotin-SAC4A was synthesized by amide condensation and azo coupling. Biotin-SAC4A demonstrated hypoxia responsive targeting and active targeting through azo and biotin groups, respectively. DOX@Biotin-SAC4A, which was prepared by loading doxorubicin (DOX) in Biotin-SAC4A, was evaluated for tumor targeting and therapy in vitro and in vivo. DOX@Biotin-SAC4A formulation effectively killed cancer cells in vitro and more efficiently delivered DOX to the lesion than the similar formulation without active targeting. Therefore, DOX@Biotin-SAC4A significantly improved the in vivo anti-tumor effect of free DOX. The facilely prepared Biotin-SAC4A offers strong DOX complexation, active targeting, and hypoxia-triggered release, providing a favorable host for effective breast cancer chemotherapy in HGDDSs. Moreover, Biotin-SAC4A also has potential to deliver agents for other therapeutic modalities and diseases.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Biotina , Sistemas de Liberação de Medicamentos/métodos , Doxorrubicina , Neoplasias da Mama/tratamento farmacológico , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral , Liberação Controlada de Fármacos
7.
Molecules ; 29(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542874

RESUMO

A Sonogashira coupling of meta-iodocalix[4]arene with various terminal acetylenes confirmed that the meta position of calixarene is well addressable, and that both thermal and microwave protocols led to good yields of alkynylcalixarenes. Alkynes thus obtained were subjected to the ferric chloride and diphenyl diselenide-promoted electrophilic closure. It turns out that the calix[4]arenes give completely different bridging products than those described for the non-macrocyclic starting compounds. This can be demonstrated not only by the isolation of products with a six-membered ring (6-exo-dig), but mainly by the smooth formation of the 5-endo-dig cyclization, which has never been observed in the aliphatic series. An attempt at electrocyclization led to a high yield of the 1,2-diketone (oxidation of the starting alkyne), again in contrast to the reaction described for the acyclic derivatives. The structures of the unexpected products were unequivocally established by X-ray analysis and clearly demonstrate how the preorganized macrocyclic skeleton favors a completely different regioselectivity of cyclization reactions compared to common aliphatic compounds.

8.
Adv Healthc Mater ; 13(9): e2303336, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38211556

RESUMO

Photodynamic therapy as a burgeoning and non-invasive theranostic technique has drawn great attention in the field of antibacterial treatment but often encounters undesired phototoxicity of photosensitizers during systemic circulation. Herein, a supramolecular substitution strategy is proposed for phototherapy of drug-resistant bacteria and skin flap repair by using macrocyclic p-sulfonatocalix(4)arene (SC4A) as a host, and two cationic aggregation-induced emission luminogens (AIEgens), namely TPE-QAS and TPE-2QAS, bearing quaternary ammonium group(s) as guests. Through host-guest assembly, the obtained complex exhibits obvious blue fluorescence in the solution due to the restriction of free motion of AIEgens and drastically inhibits efficient type I ROS generation. Then, upon the addition of another guest 4,4'-benzidine dihydrochloride, TPE-QAS can be competitively replaced from the cavity of SC4A to restore its pristine ROS efficiency and photoactivity in aqueous solution. The dissociative TPE-QAS shows a high bacterial binding ability with an efficient treatment for methicillin-resistant Staphylococcus aureus (MRSA) in dark and light irradiation. Meanwhile, it also exhibits an improved survival rate for MRSA-infected skin flap transplantation and largely accelerates the healing process. Thus, such cascaded host-guest assembly is an ideal platform for phototheranostics research.


Assuntos
Calixarenos , Staphylococcus aureus Resistente à Meticilina , Fenóis , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio , Fototerapia , Fotoquimioterapia/métodos
9.
Bioorg Med Chem ; 98: 117586, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171252

RESUMO

Breast cancer causes a high rate of mortality all over the world. Therefore, the present study focuses on the anticancer activity of new lower rim-functionalized calix[4]arenes integrated with isatin and the p-position of calixarenes with 1,4-dimethylpyridinium iodine against various human cancer cells such as MCF-7 and MDA-MB-231 breast cancer cell lines, as well as the PNT1A healthy epithelial cell line. It was observed that compound 6c had the lowest values in MCF-7 (8.83 µM) and MDA-MB-231 (3.32 µM). Cell imaging and apoptotic activity studies were performed using confocal microscopy and flow cytometry, respectively. The confocal imaging studies with 6c showed that the compound easily entered the cell, and it was observed that 6c accumulated in the mitochondria. The Comet assay test was used to detect DNA damage of compounds in cells. It was found that treated cells had abnormal tail nuclei and damaged DNA structures compared with untreated cells. In vitro human aromatase enzyme inhibition profiles showed that compound 6c had a remarkable inhibitory effect on aromatase. Compound 6c displayed a significant inhibition capacity on aromatase enzyme with the IC50 value of 0.104 ± 0.004 µM. Thus, not only the anticancer activity of the new fluorescent derivatives, which are the subject of this study, but the aromatase inhibitory profiles have also been proven.


Assuntos
Antineoplásicos , Neoplasias da Mama , Isatina , Humanos , Feminino , Inibidores da Aromatase/farmacologia , Antineoplásicos/química , Isatina/farmacologia , Isatina/química , Aromatase/metabolismo , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Mitocôndrias , DNA , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
10.
Int J Biol Macromol ; 259(Pt 2): 129385, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218273

RESUMO

This paper presents a new scaffold made from graphene oxide nanosheets, calix[4]arene supramolecules, silk fibroin proteins, cobalt ferrite nanoparticles, and alginate hydrogel (GO-CX[4]/SF/CoFe2O4/Alg). After preparing the composite, we conducted various analyses to examine its structure. These analyses included FTIR, XRD, SEM, EDS, VSM, DLS, and zeta potential tests. Additionally, we performed tests to evaluate the swelling ratio, rheological properties, and compressive mechanical strength of the material. The biological capability of the composite was tested through biocompatiblity, anticancer, hemolysis, antibacterial anti-biofilm assays. Besides, the rheological properties and swelling behaviour of the composite were studied. The results showed that the scaffold is biocompatible with Hu02 cells and the cell viability percentages of 85.23 %, 82.78 %, and 80.18 % for were acquired for 24, 48, and 72 h, respectively. In contrast, the cell viability percentage of BT549 cancer cells were obtained 65.79 %, 60.45 % and 58.16 % for same period which confirmed notable anticancer activity of the product composite. Moreover, a significant antibacterial growth inhibition against E. coli and S. aureus species highlights its potential as an effective antibacterial agent. Furthermore, the observed minimal hemolytic effect (6.56 %) and strong inhibition of P. aeruginosa biofilm formation with a low OD value (0.24) indicate notable hemocompatibility and antibacterial activity.


Assuntos
Cobalto , Compostos Férricos , Fibroínas , Grafite , Poríferos , Animais , Fibroínas/química , Staphylococcus aureus , Alginatos/farmacologia , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Seda/química
11.
Adv Healthc Mater ; 13(6): e2302940, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37844263

RESUMO

Myocardial infarction (MI) has a characteristic inflammatory microenvironment due to the overproduction of reactive oxygen species (ROS) and causes the extraordinary deposition of collagen and thereby fibrosis. An on-demand adaptive drug releasing hydrogel is designed to modulate the inflammatory microenvironment and inhibit cardiac fibroblasts (CFs) proliferation post MI by scavenging the overproduced ROS and releasing 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (DPCA) to maintain the expression of hypoxia-inducible factor 1α (HIF-1α). DPCA is prefabricated to a prodrug linked with disulfide bond (DPCA-S-S-OH). The DPCA-S-S-OH and carboxylated calixarene (CSAC4A) are grafted onto the backbone of methacrylated hyaluronic acid (HAMA) to obtain HAMA-S-S-DPCA and HAMA-CA, respectively, which are further reacted to form a dual network hydrogel (R+ /DPCA(CA)) with covalent linking and host-guest interaction between DPCA and CSAC4A. The ROS-triggered hydrolysis of ester bond and subsequently sustaining release of DPCA from the cavity of CSAC4A jointly cause the constant expression of HIF-1α, which significantly restricts the CFs proliferation, leading to suppressed fibrosis and promoted heart repair.


Assuntos
Hidrogéis , Infarto do Miocárdio , Humanos , Ácidos Carboxílicos , Liberação Controlada de Fármacos , Fibrose , Ácido Hialurônico , Infarto do Miocárdio/tratamento farmacológico , Espécies Reativas de Oxigênio
12.
J Fluoresc ; 34(2): 729-741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37358759

RESUMO

A novel naphthalimide-substituted calix[4]triazacrown-5 (Nap-Calix) at cone conformation was designed and synthesized to employ as a fluorescent probe, which enables the simultaneously detection of Co2+ and Cd2+ metal ions as well as dopamine (DA). 1H-NMR, 13C-NMR, ESI-MS and elemental analysis techniques were carried out to characterize its structure. Cation binding property of Nap-Calix against various metal ions such as Ba2+, Co2+, Ni2+, Pb2+, Zn2+, and Cd2+ exhibited that the sensor selectively binds to Co2+ and Cd2+ metal ions with a remarkable affinity. Introduction of Co2+ and Cd2+ metal ions to a solution of Nap-Calix in DMF/water (1:1, v/v) resulted with a new emission band at 370 nm when excited at 283 nm. In addition, the fluorescence sensing affinity of the probe Nap-Calix against a catecholamine neurotransmitter (dopamine) was investigated in a wide range of concentration of DA (0-0.1 mmol L-1) in 50% DMF/PBS (pH = 5.0). The fluorescence intensity of Nap-Calix, with excitation/emission peaks at 283/327 nm, is highly enhanced by DA. It was also observed that Nap-Calix exhibits excellent fluorescence behavior towards DA with a very low detection limit as 0.21 µmol L-1.

13.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068985

RESUMO

This work focuses on the synthesis of a new series of amphiphilic derivatives of calix[4]arenes for the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The aggregation properties of synthesized calix[4]arenes were studied using various techniques (fluorescence spectroscopy, nanoparticle tracking analysis, and dynamic light scattering). Increasing the length of the alkyl substituent led to stronger hydrophobic interactions, which increased polydispersity in solution. The zwitterionic nature of the synthesized calix[4]arenes was established using different types of dyes (Eosin Y for anionic structures and Rhodamine 6G for cationic structures). The synthesized calix[4]arenes were used as organic stabilizers for CuI. The catalytic efficiency of CuI-calix[4]arene was compared with that of the phase transfer catalyst tetrabutylammonium bromide (TBAB) and the surfactant sodium dodecyl sulfate (SDS). For all calixarenes, the selectivity in the CuAAC reaction was higher than that observed when TBAB and SDS were estimated.


Assuntos
Azidas , Calixarenos , Azidas/química , Cátions , Difusão Dinâmica da Luz , Micelas , Catálise , Calixarenos/química
14.
Biosensors (Basel) ; 13(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37998127

RESUMO

Over recent decades, synthetic macrocyclic compounds have attracted interest from the scientific community due to their ability to selectively and reversibly form complexes with a huge variety of guest moieties. These molecules have been studied within a wide range of sensing and other fields. Within this review, we will give an overview of the most common synthetic macrocyclic compounds including cyclodextrins, calixarenes, calixresorcinarenes, pillarenes and cucurbiturils. These species all display the ability to form a wide range of complexes. This makes these compounds suitable in the field of cancer detection since they can bind to either cancer cell surfaces or indeed to marker compounds for a wide variety of cancers. The formation of such complexes allows sensitive and selective detection and quantification of such guests. Many of these compounds also show potential for the detection and encapsulation of environmental carcinogens. Furthermore, many anti-cancer drugs, although effective in in vitro tests, are not suitable for use directly for cancer treatment due to low solubility, inherent instability in in vivo environments or an inability to be adsorbed by or transported to the required sites for treatment. The reversible encapsulation of these species in a macrocyclic compound can greatly improve their solubility, stability and transport to required sites where they can be released for maximum therapeutic effect. Within this review, we intend to present the use of these species both in cancer sensing and treatment. The various macrocyclic compound families will be described, along with brief descriptions of their synthesis and properties, with an outline of their use in cancer detection and usage as therapeutic agents. Their use in the sensing of environmental carcinogens as well as their potential utilisation in the clean-up of some of these species will also be discussed.


Assuntos
Carcinógenos Ambientais , Ciclodextrinas , Compostos Macrocíclicos , Neoplasias , Receptores Artificiais , Humanos , Detecção Precoce de Câncer , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
15.
J Biomol Struct Dyn ; : 1-9, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938142

RESUMO

Dopamine (DA) at normal levels in the human body exhibits a high potential for maintaining a proper neuron network. However, their abnormalities in humans can bring out aggressive disorders such as Schizophrenia, hypertension, Tourette's syndrome, Alzheimer's disease, bipolar depression, Parkinson's disease, drug addiction and attention-deficit hyperactivity diseases. Hence, in this study, a bis-quinoline-substituted calix[4] arene carboxylic acid derivative (Quin-Calix-CO2H) at cone conformation was developed as an effective fluorescent sensor for the detection of a catecholamine neurotransmitter (dopamine). The structure of Quin-Calix-CO2H was confirmed using 1H-NMR, 13C-NMR, ESI-MS and elemental analysis techniques. The calixarene-based fluorescent sensor (Quin-Calix-CO2H) has shown fluorescence emission at 404 nm under the excitation of 270 nm. Further, biomolecules binding property of Quin-Calix-CO2H against various biomolecules such as L-cysteine (L-Cys), α-D-glucose (D-Glu), (+)-sodium-L-ascorbate (SAA), urea (UR), L-alanine (L-Ala) and dopamine (DA) exhibited that the fluorescent sensor enables selectively and sensitively detection for DA with a remarkable affinity. The probe Quin-Calix-CO2H has shown fluorescence quenching towards DA concentration ranging from 0 to 4.0 µM with a very low limit of detection (LOD) of 88.5 nmol L-1. In addition, the binding constant and stoichiometry as well as the mechanism of quenching have been also determined from the fluorescence data.Communicated by Ramaswamy H. Sarma.

16.
Chemistry ; 29(72): e202302638, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37850687

RESUMO

In this letter, we designed a highly selective α-methylbenzylamine functionalized crown-ether-appended calix[4]arene derived phase transfer catalyst for asymmetric nitroaldol reaction to provide the desired nitroaldol adducts in high yields (up to 99 % yield) with good to excellent enantioselectivities (up to 99.8 % ee).

17.
Small ; 19(52): e2304989, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37626453

RESUMO

The calixarenes are ideal building blocks for constructing photocatalytic covalent organic frameworks (COFs), owing to their electron-rich and bowl-shaped π cavities that endow them with electron-donating and adsorption properties. However, the synthesis and structural confirmation of COFs based on calixarenes are still challenging due to their structural flexibility and conformational diversity. In this study, a calix[4]arene-derived 2D COF is synthesized using 5,11,17,23-tetrakis(p-formyl)-25,26,27,28-tetrahydroxycalix[4]arene (CHO-C4A) as the electron donor and 4,7-bis(4-aminophenyl)-2,1,3-benzothiadiazole (BTD) as the acceptor. The powder X-ray diffraction data and theoretical simulation of crystal structure indicate that COF-C4A-BTD exhibits high crystallinity and features a non-interpenetrating undulating 2D layered structure with AA-stacking. The density functional theory theoretical calculation, transient-state photocurrent tests, and electrochemical impedance spectroscopy confirm the intramolecular charge transfer behavior of COF-C4A-BTD with a donor-acceptor structure, leading to its superior visible-light-driven photocatalytic activity. COF-C4A-BTD exhibits a narrow band gap of 1.99 eV and a conduction band energy of -0.37 V versus normal hydrogen electrode. The appropriate energy band structure can facilitate the participation of ·O2- and h+ . COF-C4A-BTD demonstrates high efficacy in removing organic pollutants, such as bisphenol A, rhodamine B, and methylene blue, with removal rates of 66%, 85%, and 99% respectively.

18.
Molecules ; 28(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570668

RESUMO

A series of cationic p-tert-butylcalix[4]arenes, with side-arms that are functionalized with imidazolium groups, have been synthesized in good yields. The parent tetrahydroxy para-t-butyl-calix[4]arene was dialkylated at the phenolic hydrogen atoms using α,ω-dibromo-alkanes to yield bis(mono-brominated) alkoxy-chains of variable length. The brominated side-arms in these compounds were then further alkylated with substituted imidazoles (N-methylimidazole, N-(2,4,6-trimethyl-phenyl)imidazole, or N-(2,6-di-isopropylphenyl)imidazole) to yield a series of dicationic calixarenes with two imidazolium groups tethered, via different numbers of methylene spacers (n = 2-4), to the calixarene moiety. Related tetracationic compounds, which contain four imidazolium units linked to the calix[4]arene backbone, were also prepared. In all of these compounds, the NMR data show that the calixarenes adopted a cone configuration. All molecules were characterized by NMR spectroscopy and by MS studies. Single crystal X-ray diffraction studies were attempted on many mono-crystals of these cations, but significant disorder problems, partly caused by occluded solvent in the lattice, and lack of crystallinity resulting from partial solvent loss, precluded the good resolution of most X-ray structures. Eventually, good structural data were obtained from an unusually disordered single crystal of 5a, (1,3)-Cone-5,11,17,23-tetra-t-butyl-25,27-di-hydroxy-26,28-di-[2-(N-2,6-diisopropylphenyl-imidazolium)ethoxy]calix[4]arene dibromide and its presumed structure was confirmed. The structure revealed the presence of H-bonded interactions and some evidence of π-stacking. Some of these imidazolium salts were reacted with nickelocene to form the nickel N-heterocyclic carbene (NHC) complexes 7a-7d. A bis-carbene nickel complex 8 was also isolated and its structure was established by single crystal X-ray diffraction studies. The structure was disordered and not of high quality, but the structural data corroborated the spectroscopic data.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123127, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37453384

RESUMO

The present study developed an efficient fluorescent approach, based on a supramolecular assembly between gold nanoclusters and calix[4]arene derivatives (C4A-Ds), to detect sever pollutant of perfluorooctane sulfonic acid (PFOS). For that, a series of C4A-Ds with different chain lengths and positive charges at the wider rim were designed and synthesized. Cytidine-5' phosphate protected gold nanoclusters (AuNCs@CMP) were then assembled with calix[4]arene (LC4AP) to form AuNCs/LC4AP assembly, leading to 8-fold luminescence enhancement via the AIEE effect. However, further binding with PFOS reconstituted the as-formed assembly hrough a competitive effect, generating a fluorescence quenching. Particularly, the linear fluorescence response of AuNCs/LC4AP to PFOS realized a highly sensitive determination of the pollutant PFOS in a wide range (2.0-100 µM). In addition, the developed method successfully detected PFOS in pool water near a fire drill field, being good enough for the practical PFOS determination. The calixarene mediated method, based on the fluorescence "on-off" strategy of metal nanoclusters, is sensitive, rapid-responsive, economical, particularly, suitable for the PFOS determination in practice. It takes full advantage of the molecular recognition and self-assembly of artificial macrocyclic host molecules as a promising strategy for the PFOS determination, and will be highlight to develop new detection methods for PFOS and other poisonous compounds in environments.

20.
Molecules ; 28(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375304

RESUMO

Hexahexyloxycalix[6]arene 2b leads to the endo-cavity complexation of linear and branched alkylammonium guests showing a conformational adaptive behavior in CDCl3 solution. Linear n-pentylammonium guest 6a+ induces the cone conformation of 2b at the expense of the 1,2,3-alternate, which is the most abundant conformer of 2b in the absence of a guest. In a different way, branched alkylammonium guests, such as tert-butylammonium 6b+ and isopropylammonium 6c+, select the 1,2,3-alternate as the favored 2b conformation (6b+/6c+⊂2b1,2,3-alt), but other complexes in which 2b adopts different conformations, namely, 6b+/6c+⊂2bcone, 6b+/6c+⊂2bpaco, and 6b+/6c+⊂2b1,2-alt, have also been revealed. Binding constant values determined via NMR experiments indicated that the 1,2,3-alternate was the best-fitting 2b conformation for the complexation of branched alkylammonium guests, followed by cone > paco > 1,2-alt. Our NCI and NBO calculations suggest that the H-bonding interactions (+N-H···O) between the ammonium group of the guest and the oxygen atoms of calixarene 2b are the main determinants of the stability order of the four complexes. These interactions are weakened by increasing the guest steric encumbrance, thus leading to a lower binding affinity. Two stabilizing H-bonds are possible with the 1,2,3-alt- and cone-2b conformations, whereas only one H-bond is possible with the other paco- and 1,2-alt-2b stereoisomers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA