RESUMO
Biomolecular condensates assemble in living cells through phase separation and related phase transitions. An underappreciated feature of these dynamic molecular assemblies is that they form interfaces with other cellular structures, including membranes, cytoskeleton, DNA and RNA, and other membraneless compartments. These interfaces are expected to give rise to capillary forces, but there are few ways of quantifying and harnessing these forces in living cells. Here, we introduce viscoelastic chromatin tethering and organization (VECTOR), which uses light-inducible biomolecular condensates to generate capillary forces at targeted DNA loci. VECTOR can be utilized to programmably reposition genomic loci on a timescale of seconds to minutes, quantitatively revealing local heterogeneity in the viscoelastic material properties of chromatin. These synthetic condensates are built from components that naturally form liquid-like structures in living cells, highlighting the potential role for native condensates to generate forces and do work to reorganize the genome and impact chromatin architecture.
Assuntos
Cromatina , DNA , Elasticidade , Cromatina/metabolismo , Cromatina/química , DNA/metabolismo , DNA/química , Humanos , Viscosidade , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Loci GênicosRESUMO
The individualization of chromosomes during early mitosis and their clustering upon exit from cell division are two key transitions that ensure efficient segregation of eukaryotic chromosomes. Both processes are regulated by the surfactant-like protein Ki-67, but how Ki-67 achieves these diametric functions has remained unknown. Here, we report that Ki-67 radically switches from a chromosome repellent to a chromosome attractant during anaphase in human cells. We show that Ki-67 dephosphorylation during mitotic exit and the simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface. Experiments and coarse-grained simulations support a model in which the coalescence of chromosome surfaces, driven by co-condensation of Ki-67 and RNA, promotes clustering of chromosomes. Our study reveals how the switch of Ki-67 from a surfactant to a liquid-like condensed phase can generate mechanical forces during genome segregation that are required for re-establishing nuclear-cytoplasmic compartmentalization after mitosis.
Assuntos
Segregação de Cromossomos , Cromossomos Humanos , Antígeno Ki-67 , Mitose , Humanos , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Células HeLa , Cromossomos Humanos/metabolismo , Cromossomos Humanos/genética , Fosforilação , AnáfaseRESUMO
To improve the in situ soil stabilization, different chemical additives are used (ion exchange compounds, additives based on H2SO4 or vinyl polymers, and organic additives using lignosulfonates). One interesting alternative is the production of additives from various waste materials. The extensive testing of waste-based blends with soil was performed; the mechanical (unconfined compressive strength (UCS)) and hydraulic (capillary rise, water absorption, and frost resistance (FR)) soil properties were measured. The optimization process led to obtaining additive compositions ensuring high strength and sealing properties: by-pass ash from the ceramics industry, waste H2SO4, pyrolytic waxes/oils from waste mixed plastics, waste tires and HDPE, and emulsion from chewing gum waste. For sandy soil, the following additives were the most promising: emulsion from pyrolytic wax (EPW) from waste PE foil (WPEF) with the addition of waste H2SO4, pyrolytic-oil emulsion from waste tires, EPW from waste mixed plastics with the addition of "by-pass" waste ash and NaOH, EPW from WPEF with the addition of NaOH, and EPW from WPEF reaching up to 93% FR, a 79.6% 7-day UCS increase, and a 27.6% of 28-day UCS increase. For clay: EPW from WPEF with the addition of NaOH, EPW from WPEF with the addition of waste H2SO4, and solely EPW from WPEF reaching up to 7.5% FR, an 80.7% 7-day UCS increase, and a 119.1% 28-day UCS increase.
RESUMO
Starch granule oleogels were prepared and their rheological properties were precisely tuned using the capillary bridging phenomenon. The addition of a small amount of water to an oily suspension of starch granules can lead to starch granule bridging and network formation, transitioning it from a fluid-like to a gel-like state. Small-granule starches with high specific surface area and interfacial area exhibited a greater number of liquid bridges and stronger starch granules interactions, making them more prone to forming structurally stable oleogel systems. By increasing the content of water and starch granule, the starch oleogels exhibited three distinct structural states: pendular state (water ≤ 3.28 %, starch ≤ 17.85 %), pendular bridging network (water: 4.92 %, starch: 24.59 %), and capillary aggregates (water ≥ 6.56 %, starch > 24.59 %). Furthermore, the influence of starch granule surface lipids on the lubrication performance of the oleogel system was investigated. Surface roughness increased after extraction of surface lipids, and the friction coefficient also showed a significant increase. Overall, capillary suspension system can potentially be used to design novel fat food products, and our findings have established the correlation between starch granule surface properties and sensory perception in food, providing valuable insights for adjusting the oral processing characteristics of food.
Assuntos
Lipídeos , Amido , Amido/química , Lubrificação , Água , Compostos OrgânicosRESUMO
Bottom-up self-assembly is regarded as an alternative way to manufacture series of microstructures in many fields, especially chiral microstructures, which attract tremendous attention because of their optical micromanipulations and chiroptical spectroscopies. However, most of the self-assembled microstructures cannot be tuned after processing, which largely hinders their broad applications. Here, we demonstrate a promising manufacturing strategy for switchable microstructures by combining the flexibility of femtosecond laser printing induced capillary force self-assembly and the temperature-responsive characteristics of smart hydrogels. Through designing asymmetric cross-link density, the printed microarchitectures can be deformed in the opposite direction and assembled into switchable ordered microstructures driven by capillary forces under different temperatures. Finally, the assembled chiral microstructures with switchable opposite handedness are realized, which shows tunable vortical dichroism. The proposed strategy holds potential applications in the fields of chiral photonics, chiral sensing, and so on.
RESUMO
The use of surfactant foam for the remediation of diesel fuel, a Light Non-Aqueous Phase Liquid (LNAPL), was investigated in sand column experiments using X-ray Computed Tomography (CT). A preliminary series of tests were carried out on six surfactant candidates in order to measure their physical properties, including critical micelle concentrations and interfacial tensions (IFT) with the LNAPL. Batch tests for foam stability were carried out with and without added LNAPL, in order to measure the half-life of foam columns produced with each surfactant candidate. Foam flow-rate co-injection tests were carried out for each surfactant candidate in 405 cm3 sand columns contaminated with LNAPL at residual saturation. These tests revealed that a 1:1 mixture of sodium dodecyl sulfate and cocamidopropyl betaine, injected at a total volumetric flow-rate (Qfoam) of 45 mL/min, resulted in successful generation and propagation of foam within the contaminated porous medium. Finally, two sand column tests, carried out respectively under high- and low-pressure conditions, were imaged with a CT-scanner in order to compare and contrast foam morphology evolution as well as the LNAPL desaturation dynamics involved in both scenarios. The saturation profiles extracted from CT images provided valuable new insights.
Assuntos
Poluentes do Solo , Solo , Aerossóis , Gasolina , Areia , Poluentes do Solo/análise , Tensoativos , Tomografia Computadorizada por Raios XRESUMO
Robust processes to fabricate densely packed high-aspect-ratio (HAR) vertical semiconductor nanostructures are important for applications in microelectronics, energy storage and conversion. One of the main challenges in manufacturing these nanostructures is pattern collapse, which is the damage induced by capillary forces from numerous solution-based processes used during their fabrication. Here, using an array of vertical silicon (Si) nanopillars as test structures, we demonstrate that pattern collapse can be greatly reduced by a solution-phase deposition method to coat the nanopillars with self-assembled monolayers (SAMs). As the main cause for pattern collapse is strong adhesion between the nanopillars, we systematically evaluated SAMs with different surface energy components and identified H-bonding between the surfaces to have the largest contribution to the adhesion. The advantage of the solution-phase deposition method is that it can be implemented before any drying step, which causes patterns to collapse. Moreover, after drying, these SAMs can be easily removed using a gentle air-plasma treatment right before the next fabrication step, leaving a clean nanopillar surface behind. Therefore, our approach provides a facile and effective method to prevent the drying-induced pattern collapse in micro- and nanofabrication processes.
RESUMO
HYPOTHESIS: Generation of long-range ordering of colloidal particles through anisotropic interactions is of growing interest in material designing. At submicron-scale, routine works use synthetic spheres or rods but the knowledge pertaining to assembly of binary combination of particles is severely restricted. Improved understanding of the fundamental aspects that drive self-assembly, can lead to robust strategies for fabrication of topographically oriented films. EXPERIMENT: The fluidical geometry of a liquid crystalline (LC) solution of polysaccharide consisting of micron-sized rod and platelet units was explored. The solutions, characterized for their rheological behavior, were evaporated from a rectangular cavity. The assembly and orientation of the units was monitored by polarizing microscopy and the interparticle capillary forces approximated mathematically. FINDINGS: The units deposited into an uninterrupted membrane upon interfacial evaporation, forming a bridge along the 8 mm gap, linking the substrates. The membrane, composed of a lamellar structure, was uniaxially oriented along the direction of the gap. The rheological estimations corroborated an extremely high value of viscosity with the presence of crosslinking junctions in this solution when compared to a solution with only rod units, capable of bridging a maximum of 1 mm. It has been demonstrated for the very first time that the presence of platelet-units contributes lateral capillary interactions and assist rod-units towards a wider, self-assembled structure.
RESUMO
Condensate accumulation in the vicinity of the gas well is known to curtail hydrocarbon production by up to 80%. Numerous approaches are being employed to mitigate condensate damage and improve gas productivity. Chemical treatment, gas recycling, and hydraulic fracturing are the most effective techniques for combatting the condensate bank. However, the gas injection technique showed temporary condensate recovery and limited improvement in gas productivity. Hydraulic fracturing is considered to be an expensive approach for treating condensate banking problems. In this study, a newly synthesized gemini surfactant (GS) was developed to prevent the formation of condensate blockage in the gas condensate reservoirs. Flushing the near-wellbore area with GS will change the rock wettability and thereby reduce the capillary forces holding the condensate due to the strong adsorption capacity of GS on the rock surface. In this study, several measurements were conducted to assess the performance of GS in mitigating the condensate bank including coreflood, relative permeability, phase behavior, and nuclear magnetic resonance (NMR) measurements. The results show that GS can reduce the capillary pressure by as much as 40%, increase the condensate mobility by more than 80%, and thereby mitigate the condensate bank by up to 84%. Phase behavior measurements indicate that adding GS to the oil-brine system could not induce any emulsions at different salinity levels. Moreover, NMR and permeability measurements reveal that the gemini surfactant has no effect on the pore system and no changes were observed in the T2 relaxation profiles with and without the GS injection. Ultimately, this work introduces a novel and effective treatment for mitigating the condensate bank. The new treatment showed an attractive performance in reducing liquid saturation and increasing the condensate relative permeability.
Assuntos
Hidrocarbonetos/química , Campos de Petróleo e Gás , Tensoativos/química , Desenho de Equipamento , Sedimentos Geológicos/química , Espectroscopia de Ressonância Magnética , Permeabilidade , PorosidadeRESUMO
Artificial microstructures composed of chiral building blocks are of great significance in the fields of optics and mechanics. Here, it is shown that highly ordered chiral structures can be spontaneously assembled by a meniscus-directed capillary force arising in an evaporating liquid. The chirality is facilitated by rationally breaking the intrinsic symmetry in the unit cells through cooperative control of the geometry and spatial topology of the micropillars. The interfacial dynamics of the assembly process are studied to show that the sequential self-organization of the micropillars is influenced by the geometries, stiffness, and spatial arrangements. A diversity of chiral assemblies with controlled handedness is yielded by varying the pillar number, height, cross-section, laser power, and spatial topology. Lastly, the differential reflectance of light carrying opposite orbital angular momentums on the assembled chiral architectures are investigated, showcasing their potential in the field of chiral photonics concerning enantioselective response and exceptional optical functions.
RESUMO
Many insects can climb on smooth inverted substrates using adhesive hairy pads on their legs. The hair-surface contact is often mediated by minute volumes of liquid, which form capillary bridges in the contact zones and aid in adhesion. The liquid transport to the contact zones is poorly understood. We investigated the dynamics of liquid secretion in the dock beetle Gastrophysa viridula by quantifying the volume of the deposited liquid footprints during simulated walking experiments. The footprint volume increased with pad-surface contact time and was independent of the non-contact time. Furthermore, the footprint volume decreased to zero after reaching a threshold cumulative volume (approx. 30 fl) in successive steps. This suggests a limited reservoir with low liquid influx. We modelled our results as a fluidic resistive system and estimated the hydraulic resistance of a single attachment hair of the order of MPa · s/fl. The liquid secretion in beetle hairy pads is dominated by passive suction of the liquid during the contact phase. The high calculated resistance of the secretion pathway may originate from the nanosized channels in the hair cuticle. Such nanochannels presumably mediate the transport of cuticular lipids, which are chemically similar to the adhesive liquid.
Assuntos
Besouros , Adesividade , Adesivos , Animais , Fenômenos Biomecânicos , Extremidades , InsetosRESUMO
PURPOSE: Electrospun PLA fiber devices were investigated in the form of fiber mats and disks. Metronidazole was used as an active agent; its concentration was 12.2 and 25.7 wt% in the devices. METHODS: The structure was studied by X-ray diffraction and scanning electron microscopy, drug release by dissolution measurements, while the antimicrobial efficiency was tested on five bacterial strains. RESULTS: The XRD study showed that the polymer was partially crystalline in both devices, but a part of metronidazole precipitated and was in the form of crystals among and within the fibers. Liquid penetration and dissolution were different in the two devices, they were faster in disks and slower in fiber mats, due to the morphology of the device and the action of capillary forces. Disks released the drug much faster than fiber mats. Although the release study indicated fast drug dissolution, the concentration achieved a plateau value in 24 hrs for the disks; the inhibition effect lasted much longer, 13 days for bacteria sensitive to metronidazole. The longer inhibition period could be explained by the slower diffusion of metronidazole located inside the fibers of the device. CONCLUSION: The results suggest that the devices may be effective in the treatment of periodontitis.
Assuntos
Antibacterianos/farmacologia , Metronidazol/farmacologia , Doenças Periodontais/tratamento farmacológico , Poliésteres/química , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Antibacterianos/química , Liberação Controlada de Fármacos , Eikenella corrodens/efeitos dos fármacos , Firmicutes/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Humanos , Metronidazol/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Doenças Periodontais/microbiologia , Prevotella intermedia/efeitos dos fármacos , Propriedades de Superfície , Difração de Raios XRESUMO
HYPOTHESIS: The effects of mutual transfer of momentum between two immiscible flowing fluids in porous media are not well understood nor predictable yet. From considerations at the pore-scale, it should be possible to determine whether and to what extent interfacial viscous coupling effects are significant. EXPERIMENTS: We visualize the velocity distributions inside immobile globules of wetting phase (water) while a non-wetting phase (oil) is injected. We investigate viscous coupling effects and their relationship with the viscosity ratio and the capillary number. FINDINGS: Four regimes of viscous dissipation are identified: (i) a regime for which the fluid-fluid interface acts as a solid wall; (ii) a regime where the wetting phase is dragged in the direction of the imposed flow; (iii) and (iv) two regimes for which the trapped globule of water shows a recirculating motion due to the shear stress at the oil/water interface. We demonstrate the significant role of the lubricating effect and of the topology of the pore space on the magnitude of viscous dissipation. Importantly, for a viscosity ratio close to one and low capillary number, we demonstrate that viscous coupling effects should be incorporated into the existing Darcy's law formulation for two-phase flow in porous media.
RESUMO
The absorption and desorption of superabsorbent polymers (SAPs) in cement mixtures containing two different glass powders as supplementary cementitious materials are examined in this paper. Two SAPs with different chemical compositions were synthesized in-house and used in the experiments. SAP absorption was investigated directly through the mass change of SAPs in cement slurries, as well as indirectly using the flow test. Scanning electron microscopy was used to monitor the desorption of SAPs using samples prepared with freeze-drying. Hydration and setting time were evaluated to explain the desorption behavior of SAPs. SAP absorption generally increased in pastes with glass powders. The desorption rate of SAPs in different pastes was shown to correlate with the onset of solid skeleton development in the pastes. The addition of SAPs reduced autogenous shrinkage in neat cement paste more than in pastes with glass powders.
RESUMO
HYPOTHESIS: Aggregation of particles on a liquid interface is controlled by inter-particle forces and hydrodynamic interactions. Previous experimental work has shown atypical structures despite diffusion limited cluster aggregation like behavior. It is likely that this is primarily due to the role of capillary quadrupoles in allowing particle repositioning after aggregation, which is tested here. EXPERIMENTS: Using Stokesian dynamics and inter-particle forces unique to particles at liquid interfaces, aggregation of particles adsorbed to a liquid interface is studied. Simulations' parameters are adjusted to control hydrodynamic interaction strength, initial particle position, and inter-particle forces magnitudes to compare to existing experimental results and hypothesis. FINDINGS: It is found that initial particle position plays a small role on equilibrium interfacial microstructure but has a significant impact on aggregation kinetics. Interfacial hydrodynamic interactions and inter-particle forces have a strong impact on equilibrium microstructure by altering the amount particles can reposition, which is consistent with published results. Capillary forces that allow significant repositioning after contact appear to play a key role in previously observed fractal dimensions of particle laden interfaces.
RESUMO
The formation of a bridging gas meniscus via cavitation or nanobubbles is considered the most likely origin of the submicrometer long-range attractive forces measured between hydrophobic surfaces in aqueous solution. However, the dynamics of the formation and evolution of the gas meniscus is still under debate, in particular, in the presence of a thin air layer on a superhydrophobic surface. On superhydrophobic surfaces the range can even exceed 10 µm. Here, we report microscopic images of the formation and growth of a gas meniscus during force measurements between a superhydrophobic surface and a hydrophobic microsphere immersed in water. This is achieved by combining laser scanning confocal microscopy and colloidal probe atomic force microscopy. The configuration allows determination of the volume and shape of the meniscus, together with direct calculation of the Young-Laplace capillary pressure. The long-range attractive interactions acting on separation are due to meniscus formation and volume growth as air is transported from the surface layer.
RESUMO
Understanding the complex and dynamic nature of calcite surfaces under ambient conditions is important for optimizing industrial applications. It is essential to identify processes, their reversibility, and the relevant properties of CaCO3 solid-liquid and solid-gas interfaces under different environmental conditions, such as at increased relative humidity (RH). This work elucidates changes in surface properties on freshly cleaved calcite (topography, wettability and surface forces) as a function of time (≤28â¯h) at controlled humidity (≤3-95 %RH) and temperature (25.5⯰C), evaluated with atomic force microscopy (AFM) and contact angle techniques. In the presence of humidity, the wettability decreased, liquid water capillary forces dominated over van der Waals forces, and surface domains, such as hillocks, height about 7.0â¯Å, and trenches, depth about -3.5â¯Å, appeared and grew primarily in lateral dimensions. Hillocks demonstrated lower adhesion and higher deformation in AFM experiments. We propose that the growing surface domains were formed by ion dissolution and diffusion followed by formation of hydrated salt of CaCO3. Upon drying, the height of the hillocks decreased by about 50% suggesting their alteration into dehydrated or less hydrated CaCO3. However, the process was not entirely reversible and crystallization of new domains continued at a reduced rate.
RESUMO
The behavior of poly(sodium acrylate-co-acrylamide) copolymer hydrogels with varied chemical compositions in artificial pore solutions with three different pH values is examined. The absorption, chemical characteristics, mechanical stiffness, and desorption of the hydrogels in contact with a porous cementitious material were investigated. It was observed that the surface characteristics of the hydrogels play an important role in the desorption of hydrogels due to the capillary forces. It was shown that in the hydrogel systems studied here, the bonding between the hydrogels and the porous cementitious material is improved with an increase in the content of acrylamide in the hydrogels, and this results in an increased desorption rate of the hydrogels.
RESUMO
This paper presents an overview and discussion of magnetocapillary self-assemblies. New results are presented, in particular concerning the possible development of future applications. These self-organizing structures possess the notable ability to move along an interface when powered by an oscillatory, uniform magnetic field. The system is constructed as follows. Soft magnetic particles are placed on a liquid interface, and submitted to a magnetic induction field. An attractive force due to the curvature of the interface around the particles competes with an interaction between magnetic dipoles. Ordered structures can spontaneously emerge from these conditions. Furthermore, time-dependent magnetic fields can produce a wide range of dynamic behaviours, including non-time-reversible deformation sequences that produce translational motion at low Reynolds number. In other words, due to a spontaneous breaking of time-reversal symmetry, the assembly can turn into a surface microswimmer. Trajectories have been shown to be precisely controllable. As a consequence, this system offers a way to produce microrobots able to perform different tasks. This is illustrated in this paper by the capture, transport and release of a floating cargo, and the controlled mixing of fluids at low Reynolds number.
RESUMO
Although DNA nanowires have proven useful as a template for fabricating functional nanomaterials and a platform for genetic analysis, their widespread use is still hindered because of limited control over the size, geometry, and alignment of the nanowires. Here, we document the capillarity-induced folding of an initially wrinkled surface and present an approach to the spontaneous formation of aligned DNA nanowires using a template whose surface morphology dynamically changes in response to liquid. In particular, we exploit the familiar wrinkling phenomenon that results from compression of a thin skin on a soft substrate. Once a droplet of liquid solution containing DNA molecules is placed on the wrinkled surface, the liquid from the droplet enters certain wrinkled channels. The capillary forces deform wrinkles containing liquid into sharp folds, whereas the neighboring empty wrinkles are stretched out. In this way, we obtain a periodic array of folded channels that contain liquid solution with DNA molecules. Such an approach serves as a template for the fabrication of arrays of straight or wrinkled DNA nanowires, where their characteristic scales are robustly tunable with the physical properties of liquid and the mechanical and geometrical properties of the elastic system.