RESUMO
This review paper analyses the significance of microbial activity in permafrost carbon feedback (PCF) and emphasizes the necessity for enhanced modeling tools to appropriately predict carbon fluxes associated with permafrost thaw. Beginning with an overview of experimental findings, both in situ and laboratory, it stresses the key role of microbes and plants in PCF. The research investigates several modeling techniques, starting with current models of soil respiration and plant-microorganism interactions built outside of the context of permafrost, and then moving on to specific models dedicated to PCF. The review of the current literature reveals the complex nature of permafrost ecosystems, where various geophysical factors have considerable effects on greenhouse gas emissions. Soil properties, plant types, and time scales all contribute to carbon dynamics. Process-based models are widely used for simulating greenhouse gas production, transport, and emissions. While these models are beneficial at capturing soil respiration complexity, adjusting them to the unique constraints of permafrost environments often calls for novel process descriptions for proper representation. Understanding the temporal coherence and time delays between surface soil respiration and subsurface carbon production, which are controlled by numerous parameters such as soil texture, water content, and temperature, remains a challenge. This review highlights the need for comprehensive models that integrate thermo-hydro-biogeochemical processes to understand permafrost system dynamics in the context of changing climatic circumstances. Furthermore, it emphasizes the need for rigorous validation procedures to reduce model complexity biases.
Assuntos
Carbono , Pergelissolo , Plantas , Plantas/metabolismo , Carbono/análise , Carbono/metabolismo , Ciclo do Carbono , Microbiologia do Solo , Modelos Teóricos , Ecossistema , Solo/químicaRESUMO
Perturbations in soil microbial communities caused by climate warming are expected to have a strong impact on biodiversity and future climate-carbon (C) feedback, especially in vulnerable habitats that are highly sensitive to environmental change. Here, we investigate the impact of four-year experimental warming on soil microbes and C cycling in the Loess Hilly Region of China. The results showed that warming led to soil C loss, mainly from labile C, and this C loss is associated with microbial response. Warming significantly decreased soil bacterial diversity and altered its community structure, especially increasing the abundance of heat-tolerant microorganisms, but had no effect on fungi. Warming also significantly increased the relative importance of homogeneous selection and decreased "drift" of bacterial and fungal communities. Moreover, warming decreased bacterial network stability but increased fungal network stability. Notably, the magnitude of soil C loss was significantly and positively correlated with differences in bacterial community characteristics under ambient and warming conditions, including diversity, composition, network stability, and community assembly. This result suggests that microbial responses to warming may amplify soil C loss. Combined, these results provide insights into soil microbial responses and C feedback in vulnerable ecosystems under climate warming scenarios.
Assuntos
Ecossistema , Microbiota , Pradaria , Solo , Carbono , Mudança Climática , Microbiologia do Solo , BactériasRESUMO
Urban areas experience numerous environmental challenges, among which the anthropogenic emissions of heat and carbon are two major contributors, the former is responsible for the notorious urban heat effect, the latter longterm climate changes. Moreover, the exchange of heat and carbon dioxide are closely interlinked in the built environment, and can form positive feedback loops that accelerate the degradation of urban environmental quality. Among a handful countermeasures for heat and carbon mitigation, urban irrigation is believed to be effective in cooling, yet the understanding of its impact on the co-evolution of heat and carbon emission remains obscure. In this study, we conducted multiphysics urban climate modeling for all urban areas in the contiguous United States, and evaluated the irrigation-induced cooling and carbon mitigation. Furthermore, we assessed the impact of urban irrigation on the potential heat-carbon feedback loop, with their strength of coupling quantified by an advanced causal inference method using the convergent cross mapping algorithms. It is found that the impact of urban irrigation varies vastly in geographically different cities, with its local and non-local effect unraveling distinct pathways of heat-carbon feedback mechanism.
Assuntos
Temperatura Baixa , Temperatura Alta , Estados Unidos , Cidades , Temperatura , RetroalimentaçãoRESUMO
Microbial residues contribute to the long-term stabilization of carbon in the entire soil profile, helping to regulate the climate of the planet; however, how sensitive these residues are to climatic seasonality remains virtually unknown, especially for deep soils across environmental gradients. Here, we investigated the changes of microbial residues along soil profiles (0-100 cm) from 44 typical ecosystems with a wide range of climates (~3100 km transects across China). Our results showed that microbial residues account for a larger portion of soil carbon in deeper (60-100 cm) vs. shallower (0-30 and 30-60 cm) soils. Moreover, we find that climate especially challenges the accumulation of microbial residues in deep soils, while soil properties and climate share their roles in controlling the residue accumulation in surface soils. Climatic seasonality, including positive correlations with summer precipitation and maximum monthly precipitation, as well as negative correlations with temperature annual range, are important factors explaining microbial residue accumulation in deep soils across China. In particular, summer precipitation is the key regulator of microbial-driven carbon stability in deep soils, which has 37.2% of relative independent effects on deep-soil microbial residue accumulation. Our work provides novel insights into the importance of climatic seasonality in driving the stabilization of microbial residues in deep soils, challenging the idea that deep soils as long-term carbon reservoirs can buffer climate change.
Assuntos
Carbono , Microbiologia do Solo , Solo , Carbono/análise , China , Mudança Climática , Ecossistema , Solo/químicaRESUMO
The effect of the Southern Ocean on global climate change is assessed using Earth system model projections following an idealized 1% annual rise in atmospheric CO2. For this scenario, the Southern Ocean plays a significant role in sequestering heat and anthropogenic carbon, accounting for 40% ± 5% of heat uptake and 44% ± 2% of anthropogenic carbon uptake over the global ocean (with the Southern Ocean defined as south of 36°S). This Southern Ocean fraction of global heat uptake is however less than in historical scenarios with marked hemispheric contrasts in radiative forcing. For this idealized scenario, inter-model differences in global and Southern Ocean heat uptake are strongly affected by physical feedbacks, especially cloud feedbacks over the globe and surface albedo feedbacks from sea-ice loss in high latitudes, through the top-of-the-atmosphere energy balance. The ocean carbon response is similar in most models with carbon storage increasing from rising atmospheric CO2, but weakly decreasing from climate change with competing ventilation and biological contributions over the Southern Ocean. The Southern Ocean affects a global climate metric, the transient climate response to emissions, accounting for 28% of its thermal contribution through its physical climate feedbacks and heat uptake, and so affects inter-model differences in meeting warming targets. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.
RESUMO
Rapid climate warming across northern high latitudes is leading to permafrost thaw and ecosystem carbon release while simultaneously impacting other biogeochemical cycles including nitrogen. We used a two-year laboratory incubation study to quantify concomitant changes in carbon and nitrogen pool quantity and quality as drivers of potential CO2 production in thawed permafrost soils from eight soil cores collected across the southern Northwest Territories (NWT), Canada. These data were contextualized via in situ annual thaw depth measurements from 2015 to 2019 at 40 study sites that varied in burn history. We found with increasing time since experimental thaw the dissolved carbon and nitrogen pool quality significantly declined, indicating sustained microbial processing and selective immobilization across both pools. Piecewise structural equation modeling revealed CO2 trends were predominantly predicted by initial soil carbon content with minimal influence of dissolved phase carbon. Using these results, we provide a first-order estimate of potential near-surface permafrost soil losses of up to 80 g C m-2 over one year in southern NWT, exceeding regional historic mean primary productivity rates in some areas. Taken together, this research provides mechanistic knowledge needed to further constrain the permafrostcarbon feedback and parameterize Earth system models, while building on empirical evidence that permafrost soils are at high risk of becoming weaker carbon sinks or even significant carbon sources under a changing climate.
Assuntos
Pergelissolo , Carbono/análise , Dióxido de Carbono/análise , Ecossistema , Nitrogênio/análise , Territórios do Noroeste , Pergelissolo/química , Solo/químicaRESUMO
In 2020, China announced the "emission peak, carbon neutrality" policy, that is, China aims to have CO2 emissions peak before 2030 and achieve carbon neutrality before 2060. The scenario of carbon neutrality will be significantly distinguished from the scenario we experienced since the industrial revolution. However, instrumental data are unavailable in the future carbon-neutral scenario. Earth system models and climate dynamics theory are needed to comprehend and project the climate change. In this paper, we illustrate our perspective of the issues related to "emission peak, carbon neutrality", including climate dynamics, climate-carbon feedback, interaction between China and global climate and carbon emissions and solutions, etc. We highlight that climate change has profoundly affected human production and life. The frequent occurrence of extreme weather disasters in recent years, together with the impact of epidemics, make the future "carbon peak & carbon-neutral" scenario more complex. There is whopping uncertainty but also a massive challenge to the scientific community. Thus, carbon neutrality is closely related to domestic production and lives, and there is little time left for planning. We believe that we will make a breakthrough in climate dynamics in the context of carbon neutrality with our joint efforts, which will serve our country's carbon emission policy at different stages.
RESUMO
Interaction between the atmosphere, plants and soils plays an important role in the carbon cycle. Soils contain vast amounts of carbon, but their capacity to keep it belowground depends on the long-term ecosystem dynamics. Plant growth has the potential of adding or releasing carbon from soil stocks. Since plant growth is also stimulated by higher CO2 levels, understanding its impact on soils becomes crucial for estimating carbon sequestration at the ecosystem level. A recent meta-analysis explored the effect CO2 levels have in plant versus soil carbon sequestration. The integration of 108 experiments performed across different environments revealed that the magnitude of plant growth and the nutrient acquisition strategy result in counterintuitive feedback for soil carbon sequestration.
RESUMO
Climate warming affects soil carbon (C) dynamics, with possible serious consequences for soil C stocks and atmospheric CO2 concentrations. However, the mechanisms underlying changes in soil C storage are not well understood, hampering long-term predictions of climate C-feedbacks. The activity of the extracellular enzymes ligninase and cellulase can be used to track changes in the predominant C sources of soil microbes and can thus provide mechanistic insights into soil C loss pathways. Here we show, using meta-analysis, that reductions in soil C stocks with warming are associated with increased ratios of ligninase to cellulase activity. Furthermore, whereas long-term (≥5 years) warming reduced the soil recalcitrant C pool by 14%, short-term warming had no significant effect. Together, these results suggest that warming stimulates microbial utilization of recalcitrant C pools, possibly exacerbating long-term climate-C feedbacks.
RESUMO
Realistic representation of land carbon sink in climate models is vital for predicting carbon climate feedbacks in a changing world. Although soil erosion that removes land organic carbon has increased substantially since the onset of agriculture, it is rarely included in the current generation of climate models. Using an Earth system model (ESM) with soil erosion represented, we estimated that on average soil erosion displaces 5% of newly fixed land organic carbon downslope annually in the continental United States. In the lower Mississippi river basin and the Cascades, the fraction can be as large as 40%. About 12% of the eroded organic carbon is eventually exported to inland waters, which is equal to 14% of the simulated net carbon gain by terrestrial ecosystems. By comparing the eroded organic carbon export to rivers with the particulate organic carbon export to oceans, we demonstrated that a large fraction of the carbon export to rivers could have been mineralized in inland waters. Importantly, with a direct comparison of eroded and exported soil organic carbon and land net carbon uptake, we found that ESMs that ignore soil erosion likely offset the erosional carbon loss by increasing heterotrophic respiration implicitly. But as soil erosion and heterotrophic respiration respond differently to a warming climate, this unrealistic compensation would lead to biased predictions of future land carbon sink.
RESUMO
Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2 ) and methane (CH4 ) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant-soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution flow-through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10-15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2 -C m-2 day-1 ; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2 -C m-2 day-1 , mean ± SD, pre- and post-thaw, respectively). Radiocarbon dating (14 C) of respired CO2 , supported by an independent curve-fitting approach, showed a clear contribution (9%-27%) of old carbon to this enhanced post-thaw CO2 flux. Elevated concentrations of CO2 , CH4 , and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost-carbon feedback by adding to the atmospheric CO2 burden post-thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre- and post-thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales.
Assuntos
Ciclo do Carbono , Mudança Climática , Pergelissolo , Regiões Árticas , Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Gases de Efeito Estufa/análise , Gases de Efeito Estufa/metabolismo , Metano/análise , Metano/metabolismo , Oxirredução , Pergelissolo/química , Plantas/metabolismoRESUMO
Understanding the temperature sensitivity (Q10 ) of soil organic C (SOC) decomposition is critical to quantifying the climate-carbon cycle feedback and predicting the response of ecosystems to climate change. However, the driving factors of the spatial variation in Q10 at a continental scale are fully unidentified. In this study, we conducted a novel incubation experiment with periodically varying temperature based on the mean annual temperature of the soil origin sites. A total of 140 soil samples were collected from 22 sites along a 3,800 km long north-south transect of forests in China, and the Q10 of soil microbial respiration and corresponding environmental variables were measured. Results showed that changes in the Q10 values were nonlinear with latitude, particularly showing low Q10 values in subtropical forests and high Q10 values in temperate forests. The soil C:N ratio was positively related to the Q10 values, and coniferous forest soils with low SOC quality had higher Q10 values than broadleaved forest soils with high SOC quality, which supported the "C quality temperature" hypothesis. Out of the spatial variations in Q10 across all ecosystems, gram-negative bacteria exhibited the most importance in regulating the variation in Q10 and contributed 25.1%, followed by the C:N ratio (C quality), fungi, and the fungi:bacteria ratio. However, the dominant factors that regulate the regional variations in Q10 differed among the tropical, subtropical, and temperate forest ecosystems. Overall, our findings highlight the importance of C quality and microbial controls over Q10 value in China's forest ecosystems. Meanwhile, C dynamics in temperate forests under a global warming scenario can be robustly predicted through the incorporation of substrate quality and microbial property into models.
Assuntos
Mudança Climática , Florestas , Microbiologia do Solo , Temperatura , Bactérias/metabolismo , Carbono/análise , Ciclo do Carbono , China , Fungos , Aquecimento Global , Consumo de Oxigênio , Solo/químicaRESUMO
Cryosols contain ~33% of the global soil organic carbon. Cryosol warming and permafrost degradation may enhance the CO2 release to the atmosphere through the microbial decomposition. Despite the large carbon pool, the permafrost carbon feedback on the climate remains uncertain. In this study, we aimed at better understanding the diurnal evolution of the temperature sensitivity of CO2 efflux in Cryosols. A Histic Cryosol and a Turbic Cryosol were instrumented in tussock tundra ecosystems near Salluit (Nunavik, Canada). Open top chambers were installed during summer 2011 and the ground temperature, the soil moisture and meteorological variables were recorded hourly while the ecosystem respiration was measured three times per day every second day with opaque and closed dynamic chambers in control and warm stations. Despite warmer conditions, the average CO2 efflux at the control stations at the Histic site (1.29±0.45µmolCO2m-2s-1) was lower than at the Turbic site (2.30±0.74µmolCO2m-2s-1). The increase in CO2 efflux with warming was greater in the Histic Cryosol (~39%) than in the Turbic Cryosol (~16%). Our study showed that the temperature sensitivity of the ecosystem respiration evolved during the day and decreased with the experimental warming. Both sites exhibited diurnal hysteresis loops between CO2 efflux and the soil surface temperature. The width of hysteresis loops increased with the solar radiation and decreased along the growing season. We developed simple linear models that took into account the diurnal evolution of the temperature sensitivity of CO2 efflux and we estimated the seasonal cumulative carbon release to the atmosphere. The calculation using solely diurnal measurements significantly differed from the seasonal carbon release modelled hourly. Our study highlighted that the time of the day when measurements are performed should be taken into account to accurately estimate the seasonal carbon release from tundra ecosystems.
RESUMO
Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the incorporation of this nonlinear process into projections of carbon and nitrogen release from degrading permafrost.
Assuntos
Carbono/análise , Mudança Climática , Nitrogênio/análise , Pergelissolo , Solo/química , AlaskaRESUMO
Understanding how soil respiration (Rs) and its source components respond to climate warming is crucial to improve model prediction of climate-carbon (C) feedback. We conducted a manipulation experiment by warming and clipping in a prairie dominated by invasive winter annual Bromus japonicas in Southern Great Plains, USA. Infrared radiators were used to simulate climate warming by 3 °C and clipping was used to mimic yearly hay mowing. Heterotrophic respiration (Rh) was measured inside deep collars (70 cm deep) that excluded root growth, while total soil respiration (Rs) was measured inside surface collars (2-3 cm deep). Autotrophic respiration (Ra) was calculated by subtracting Rh from Rs. During 3 years of experiment from January 2010 to December 2012, warming had no significant effect on Rs. The neutral response of Rs to warming was due to compensatory effects of warming on Rh and Ra. Warming significantly (P < 0.05) stimulated Rh but decreased Ra. Clipping only marginally (P < 0.1) increased Ra in 2010 but had no effect on Rh. There were no significant interactive effects of warming and clipping on Rs or its components. Warming stimulated annual Rh by 22.0%, but decreased annual Ra by 29.0% across the 3 years. The decreased Ra was primarily associated with the warming-induced decline of the winter annual productivity. Across the 3 years, warming increased Rh/Rs by 29.1% but clipping did not affect Rh/Rs. Our study highlights that climate warming may have contrasting effects on Rh and Ra in association with responses of plant productivity to warming.