Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(39): 12027-12035, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39311392

RESUMO

S-redox involving solvated polysulfides is accompanied by volumetric change and structural decay of the S-based cathodes. Here, we propose a synchronous construction strategy for consolidating Li, Se, S, and C elements within a composite cathode via a paradigm reaction of 8Li+2Se+CS2 = 2Li4SeS+C. The obtained composite features crystalline Li4SeS encapsulated in a carbon nanocage (Li4SeS@C), exhibiting ultrahigh electrical conductivity, ultralow activation barrier, and excellent structural integrity, accordingly enabling large specific capacity (615 mAh g-1) and high capacity retention (87.3% after 350 cycles) at 10 A g-1. TOF-SIMS demonstrates its superior volumetric efficiency to a similar derivative SeS@C (2Se+CS2 = 2SeS+C), and DFT reveals its lower activation barrier than Li2S@C and Li2Se@C. This consolidation design significantly improves the electrochemical performance of S-based cathodes, and the paradigm reaction guarantees structural diversity and flexibility. Moreover, employing a synchronous construction mechanism to maximize the synergistic effect between element consolidation and carbon encapsulation opens up a new approach for developing robust S or chalcogenide cathodes.

2.
Front Bioeng Biotechnol ; 12: 1400765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863493

RESUMO

Multifunctional magneto-plasmonic nanoparticles with magnetic hyperthermia and photothermal therapy could kill cancer cells efficiently. Herein, carbon-encapsulated Au/Fe3O4 (Au/Fe3O4@C) was fabricated using an enclosed flame spray pyrolysis. The nanostructures, including an Fe3O4 core (51.9-55.2 nm) with a decreasing carbon shell thickness and an Au core (4.68-8.75 nm) coated with 2-4 graphite layers, were tailored by tuning the C2H4 content in the reacting gas mixture. Saturation magnetization (33.7-48.2 emu/g) and optical absorption were determined. The carbon shell facilitated the dispersion of Au/Fe3O4 and restrained their laser-induced and magnetic field-induced coalescence and growth. Au/Fe3O4@C exhibited excellent magnetic resonance imaging capability (91.4 mM-1 s-1) and photothermal performance (65.4°C for 0.8 mg/mL Au/Fe3O4@C at a power density of 1.0 W/cm2 after 300 s near-IR laser irradiation (808 nm)). Moreover, the combined application of photothermal and magnetic-heating properties reduced the required intensity of both laser and magnetic field compared to the intensity of separate situations. Our work provides a unique, intriguing approach to preparing multicomponent core/shell nanoaggregates that are promising candidates for esophageal cancer cell therapy.

3.
J Colloid Interface Sci ; 672: 43-52, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824687

RESUMO

The natural abundance of sodium has fostered the development of sodium-ion batteries for large-scale energy storage. However, the low capacity of the anodes hinders their future application. Herein, carbon-encapsulated MnSe-FeSe nanorods (MnSe-FeSe@C) have been fabricated by the in-situ transformation from polydopamine-coated MnO(OH)-Fe2O3. The heterostructure constructed by MnSe and FeSe nanocrystals induces the formation of built-in electric fields, accelerating electron transfer and ion diffusion, thereby improving reaction kinetics. In addition, carbon enclosure can buffer the volumetric stress and enhance the electrical conductivity. These aspects cooperatively endow the anode with superior cycling stability and distinguished rate performance. Specifically, the discharge capacity of MnSe-FeSe@C reaches 414.3 mA h g-1 at 0.1 A g-1 and 388.8 mA h g-1 even at a high current density of 5.0 A g-1. In addition, it still retains a high reversible capacity of 449.2 mA h g-1 after 700 long cycles at 1.0 A g-1. Further, the ab initio calculation has been employed to authenticate the existence of the built-in electric field by Bader charge, indicating that 0.24 electrons in MnSe were transferred to FeSe. The in-situ XRD has been used to evaluate the phase transition during the charging/discharging process, revealing the sodium ion storage mechanism. The construction of heterostructure material paves a new way to design performance-enhanced anode materials for sodium-ion batteries.

4.
ACS Appl Mater Interfaces ; 16(5): 5881-5895, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277499

RESUMO

This study presents a novel approach to developing high-performance lithium-ion battery electrodes by loading titania-carbon hybrid spherogels with sulfur. The resulting hybrid materials combine high charge storage capacity, electrical conductivity, and core-shell morphology, enabling the development of next-generation battery electrodes. We obtained homogeneous carbon spheres caging crystalline titania particles and sulfur using a template-assisted sol-gel route and carefully treated the titania-loaded carbon spherogels with hydrogen sulfide. The carbon shells maintain their microporous hollow sphere morphology, allowing for efficient sulfur deposition while protecting the titania crystals. By adjusting the sulfur impregnation of the carbon sphere and varying the titania loading, we achieved excellent lithium storage properties by successfully cycling encapsulated sulfur in the sphere while benefiting from the lithiation of titania particles. Without adding a conductive component, the optimized material provided after 150 cycles at a specific current of 250 mA g-1 a specific capacity of 825 mAh g-1 with a Coulombic efficiency of 98%.

5.
Nanomaterials (Basel) ; 13(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38063705

RESUMO

The phase composition and comparison of iron-based catalysts used for the synthesis of carbon nanotubes were investigated. This work reflects typical catalyst conditions and their evolution during the growth of carbon nanotubes. The preparation of carbon nanotubes was carried out by chemical vapour deposition at temperatures between 800 and 1100 °C. Ferrocene or zero-valent iron nanoparticles were used as "catalysts", and toluene, ferrocene and the ferrocene-toluene solution played the role of carbon precursors, respectively. The phase composition of the prepared product was studied by Mössbauer spectroscopy and X-ray powder diffraction. Mössbauer analysis was particularly useful for samples with a low content of the nanoparticle form of the catalyst. The composition of the prepared samples differed depending on the synthesis temperature, catalyst and precursor. Phase analysis revealed the presence of α-Fe and Fe3C in all samples. In addition, γ-Fe and iron oxides were identified under certain conditions. Scanning and transmission electron microscopy confirmed the carbon nanotube/nanofibre-like morphology and the presence of iron species.

6.
Materials (Basel) ; 16(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37895676

RESUMO

Fe-Co alloy nanoparticles with different sizes, supported by carbon derived from several polymers, namely polyacrylonitrile, polyvinyl alcohol and chitosan, have been synthesized by a one-pot method involving simultaneous metal nanoparticle formation and polymer carbonization. The method involves the joint dissolution of metal salts and a polymer, followed by annealing of the resulting dried film. Detailed XRD analysis confirmed the formation of Fe-Co alloy nanoparticles in each sample, regardless of the initial polymer used. Transmission electron microscopy images showed that the Fe-Co nanoparticles were all spherical, were homogeneously distributed within the carbon support and varied by size depending on the initial polymer nature and synthesis temperature. Fe-Co nanoparticles supported by polyacrylonitrile-derived carbon exhibited the smallest size (6-12 nm), whereas nanoparticles on chitosan-derived carbon support were characterized by the largest particle size (13-38 nm). The size dependence of magnetic properties were studied by a vibrating sample magnetometer at room temperature. For the first time, the critical particle size of Fe-Co alloy nanoparticles with equiatomic composition has been experimentally determined as 13 nm, indicating the transition of magnetic properties from ferromagnetic to superparamagnetic.

7.
Adv Mater ; 35(42): e2302537, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37471253

RESUMO

Photothermal CO2 hydrogenation to high-value-added chemicals and fuels is an appealing approach to alleviate energy and environmental concerns. However, it still relies on the development of earth-abundant, efficient, and durable catalysts. Here, the design of N-doped carbon-coated Co nanoparticles (NPs), as a photothermal catalyst, synthesized through a two-step pyrolysis of Co-based ZIF-67 precursor, is reported. Consequently, the catalyst exhibits remarkable activity and stability for photothermal CO2 hydrogenation to CO with a 0.75 mol gcat -1 h-1 CO production rate under the full spectrum of light illumination. The high activity and durability of these Co NPs are mainly attributed to the synergy of the attuned size of Co NPs, the thickness of carbon layers, and the N doping species. Impressively, the experimental characterizations and theoretical simulations show that such a simple N-doped carbon coating strategy can effectively facilitate the desorption of generated CO and activation of reactants due to the strong photothermal effect. This work provides a simple and efficient route for the preparation of highly active and durable nonprecious metal catalysts for promising photothermal catalytic reactions.

8.
ACS Appl Mater Interfaces ; 15(15): 19002-19010, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37026166

RESUMO

High-performance metal-based catalysts are pursued to improve the sluggish reaction kinetics in lithium-sulfur batteries. However, it is challenging to achieve high catalytic activity and stability simultaneously due to the inevitable passivation of the highly active metal nanoparticles by lithium polysulfides (LiPSs). Herein, we show a design with well-balanced activity and stability to solve the above problem, that is, the cobalt (Co) nanoparticles (NPs) encapsulated with ultrathin carbon shells prepared by the one-step pyrolysis of ZIF-67. With an ultrathin carbon coating (∼1 nm), the direct exposure of Co NPs to LiPSs is avoided, but it allows the fast electron transfer from the highly active Co NPs to LiPSs for their conversion to the solid products, ensuring the efficient suppression of shuttling in long cycling. As a result, the sulfur cathode with such a catalyst exhibited good cycling stability (0.073% capacity fading over 500 cycles) and high sulfur utilization (638 mAh g-1 after 180 cycles under a high sulfur mass loading of 7.37 mg cm-2 and a low electrolyte/sulfur ratio of 5 µL mg-1). This work provides insights into the rational design of a protection layer on a metal-based catalyst to engineer both high catalytic activity and stability toward high-energy and long-life Li-S batteries.

9.
J Colloid Interface Sci ; 634: 346-356, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535170

RESUMO

FeP has emerged as an appealing anode material for lithium-ion batteries (LIBs) thanks to its high theoretical capacity, safe voltage platform and rich resources. Nevertheless, sluggish charge transfer kinetics, inevitable volume expansion and easy agglomeration of active materials limit its practical applications. Here, novel Cu-doped FeP@C was synthesized by a synergistic strategy of metal doping and in situ carbon encapsulation. The optimized Cu-doped FeP@C anode demonstrates a highly reversible specific capacity (920 mAh g-1 at 0.05 A g-1), superb rate performance (345 mAh g-1 at 5 A g-1) and long-term cycle stability (340 mAh g-1 at 2 A g-1 after 600 cycles). The electrochemical mechanism was investigated by cyclic voltammetry, kinetic analysis and DFT calculations. The results reveal that carbon frameworks can improve the conductivity and slow down the volume expansion, with highly dispersed FeP facilitating Li-ion migration during the charge and discharge processes. Additionally, Cu doping leads to rearrangement of the charge density and an additional lattice distortion in FeP, which boosts the electron mobility and enriches the surface-active sites, promoting electrochemical reaction and charge storage. This study presents a feasible and effective design for developing transition metal phosphate (TMP) anodes for high-performance LIBs.

10.
Small ; 18(13): e2106640, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35146906

RESUMO

Lithium-sulfur (Li-S) batteries have been considered as one of the most promising electrochemical energy storage systems because of their high energy density. However, a series of issues severely limit the practical performances of Li-S batteries such as low conductivity, significant volume change, and shuttle effect. The hollow carbon spheres with huge voids and high electrical conductivity are promising as sulfur hosts. Unfortunately, the nonpolar nature of carbon materials cannot prevent the shuttle effect effectively. In this case, the atomic cobalt is introduced to a nitrogen-doped hollow carbon sphere (ACo@HCS) through polymerization and controlled pyrolysis. The atomic cobalt dopants not only act as active sites to restrict the shuttle effect, but also can promote the kinetics of the sulfur redox reactions. ACo@HCS acting as sulfur host exhibits a high discharge capacity (1003 mAh g-1 ) at a 1.0 C rate after 500 cycles, and the corresponding decay rate is as low as 0.002% per cycle. This exciting work paves a new way to design high-performance Li-S batteries.

11.
Small Methods ; 5(11): e2100937, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34927969

RESUMO

Carbon encapsulation is an effective strategy for enhancing the durability of Pt-based electrocatalysts for the oxygen reduction reaction (ORR). However, high-temperature treatment is not only energy-intensive but also unavoidably leads to possible aggregation. Herein, a low-temperature polymeric carbon encapsulation strategy (≈150 °C) is reported to encase Pt nanoparticles in thin and amorphous carbonaceous layers. Benefiting from the physical confinement effect and enhanced antioxidant property induced by the surface carbon species, significantly improved stabilities can be achieved for polymeric carbon species encapsulated Pt nanoparticles (Pt@C/C). Particularly, a better antipoisoning capability toward CO, SOx , and POx is observed in the case of Pt@C/C. To minimize the thickness of the catalyst layer and reduce the mass transfer resistance, the high mass loading Pt@C/C (40 wt%) is prepared and applied to high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). At 160 °C, a peak power density of 662 mW cm-2 is achieved with 40% Pt@C/C cathode in H2 -O2 HT-PEMFCs, which is superior to that with 40% Pt/C cathode. The facile strategy provides guidance for the synthesis of highly durable carbon encapsulated noble metal electrocatalysts toward ORR.

12.
ACS Appl Mater Interfaces ; 13(9): 11007-11017, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33621044

RESUMO

Potassium-ion batteries (KIBs) have attracted researchers' widespread attention because of the luxuriant reserves of potassium salts and their low cost. Nevertheless, the absence of suitable electrode materials with a stable electrochemical property is a crucial issue, which seriously hampers the practical applications of KIBs. Herein, a scalable anode material consisting of ultrafine ZnS nanoparticles encapsulated in three-dimensional (3D) carbon nanosheets is explored for KIBs. This hierarchical anode is obtained via a simple and universal sol-gel method combined with a typical solid-phase sulfidation route. The special structure of this anode facilitates good contact with electrolytes and has enough voids to buffer the large volumetric stress changing during K+ insertion/extraction. Thus, the 3D ZnS@C electrode exhibitsour stable cycling performance (230 mAh g-1 over 2300 cycles at 1.0 A g-1) and superior rate capability. The kinetic analysis indicates that a ZnS@C anode with considerable pesoudecapactive contribution benefits a fast potassium/depotassium process. Detailed ex-situ and in-situ measurements reveal that this ZnS@C anode combines reversible conversion and alloying-type reactions. This rationally designed ZnS@C material is highly applicable for KIBs, and the current route opens an avenue for the development of highly stable K+ storage materials.

13.
ACS Appl Mater Interfaces ; 11(25): 22457-22463, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31194506

RESUMO

Copper sulfide has been regarded as a promising thermoelectric material with relatively high thermoelectric performance and abundant resource. Large-scale synthesis and low-cost production of high-performance thermoelectric materials are keys to widespread application of thermoelectric technology. Here, Cu2- xS particles encapsulated in a thin carbon shell are fabricated by a scalable wet chemical method (19.7 g/batch). The synthesized particles go through the crystal-phase transition from orthorhombic to tetragonal during high-temperature annealing and sintering. After the phase transition, electrical conductivity of this composite (Cu2- xS@C) increases by approximately 50% compared to that of the pure Cu2- xS sample, and can be attibuted to an increase in carrier concentration. Phonon scattering interface formation and superionic phase of Cu2- xS@C results in very low lattice thermal conductivity of 0.22 W m-1 K-1, and maximum thermoelectric figure of merit ( ZT) of 1.04 at 773 K, which is excellent for thermoelectric performance in pure-phase copper sulfide produced via chemical synthesis. This discovery sets the stage for the use of facile wet chemical synthesis methods for large-scale transition-metal chalcogenide thermoelectric material production.

14.
Nanomaterials (Basel) ; 8(7)2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30011881

RESUMO

The technique of laser ablation in liquids (LAL) has already demonstrated its flexibility and capability for the synthesis of a large variety of surfactant-free nanomaterials with a high purity. However, high purity can cause trouble for nanomaterial synthesis, because active high-purity particles can spontaneously grow into different nanocrystals, which makes it difficult to accurately tailor the size and shape of the synthesized nanomaterials. Therefore, a series of questions arise with regards to whether particle growth occurs during colloid storage, how large the particle size increases to, and into which shape the particles evolve. To obtain answers to these questions, here, Ag particles that are synthesized by femtosecond (fs) laser ablation of Ag in acetone are used as precursors to witness the spontaneous growth behavior of the LAL-generated surfactant-free Ag dots (2⁻10 nm) into different polygonal particles (5⁻50 nm), and the spontaneous size separation phenomenon by the carbon-encapsulation induced precipitation of large particles, after six months of colloid storage. The colloids obtained by LAL at a higher power (600 mW) possess a greater ability and higher efficiency to yield colloids with sizes of <40 nm than the colloids obtained at lower power (300 mW), because of the generation of a larger amount of carbon 'captors' by the decomposition of acetone and the stronger particle fragmentation. Both the size increase and the shape alteration lead to a redshift of the surface plasmon resonance (SPR) band of the Ag colloid from 404 nm to 414 nm, after storage. The Fourier transform infrared spectroscopy (FTIR) analysis shows that the Ag particles are conjugated with COO⁻ and OH⁻ groups, both of which may lead to the growth of polygonal particles. The CO and CO2 molecules are adsorbed on the particle surfaces to form Ag(CO)x and Ag(CO2)x complexes. Complementary nanosecond LAL experiments confirmed that the particle growth was inherent to LAL in acetone, and independent of pulse duration, although some differences in the final particle sizes were observed. The nanosecond-LAL yields monomodal colloids, whereas the size-separated, initially bimodal colloids from the fs-LAL provide a higher fraction of very small particles that are <5 nm. The spontaneous growth of the LAL-generated metallic particles presented in this work should arouse the special attention of academia, especially regarding the detailed discussion on how long the colloids can be preserved for particle characterization and applications, without causing a mismatch between the colloid properties and their performance. The spontaneous size separation phenomenon may help researchers to realize a more reproducible synthesis for small metallic colloids, without concern for the generation of large particles.

15.
Nano Lett ; 17(9): 5740-5746, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28817290

RESUMO

The development of inexpensive electrode materials with a high volumetric capacity and long cycle-life is a central issue for large-scale lithium-ion batteries. Here, we report a nanostructured porous Fe2N anode fully encapsulated in carbon microboxes (Fe2N@C) prepared through a facile confined anion conversion from polymer coated Fe2O3 microcubes. The resulting carbon microboxes could not only protect the air-sensitive Fe2N from oxidation but also retain thin and stable SEI layer. The appropriate internal voids in the Fe2N cubes help to release the volume expansion during lithiation/delithiation processes, and Fe2N is kept inside the carbon microboxes without breaking the shell, resulting in a very low electrode volume expansion (the electrode thickness variation upon lithiation is ∼9%). Therefore, the Fe2N@C electrodes maintain high volumetric capacity (1030 mA h cm-3 based on the lithiation-state electrode volume) comparable to silicon anodes, stable cycling performance (a capacity retention of over 91% for 2500 cycles), and excellent rate performance. Kinetic analysis reveals that the Fe2N@C shows an enhanced contribution of capacitive charge mechanism and displays typical pseudocapacitive behavior. This work provides a new direction on designing and constructing nanostructured electrodes and protective layer for air unstable conversion materials for potential applications as a lithium-ion battery/capacitor electrode.

16.
Nano Lett ; 17(3): 2034-2042, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28191960

RESUMO

In the current research project, we have prepared a novel Sb@C nanosphere anode with biomimetic yolk-shell structure for Li/Na-ion batteries via a nanoconfined galvanic replacement route. The yolk-shell microstructure consists of Sb hollow yolk completely protected by a well-conductive carbon thin shell. The substantial void space in the these hollow Sb@C yolk-shell particles allows for the full volume expansion of inner Sb while maintaining the framework of the Sb@C anode and developing a stable SEI film on the outside carbon shell. As for Li-ion battery anode, they displayed a large specific capacity (634 mAh g-1), high rate capability (specific capabilities of 622, 557, 496, 439, and 384 mAh g-1 at 100, 200, 500, 1000, and 2000 mA g-1, respectively) and stable cycling performance (a specific capacity of 405 mAh g-1 after long 300 cycles at 1000 mA g-1). As for Na-ion storage, these yolk-shell Sb@C particles also maintained a reversible capacity of approximate 280 mAh g-1 at 1000 mA g-1 after 200 cycles.

17.
ACS Appl Mater Interfaces ; 8(30): 19466-74, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27404906

RESUMO

Carbon-encapsulated hollow porous vanadium-oxide (C/HPV2O5) nanofibers have been fabricated using electrospinning and postcalcination. By optimized postcalcination of vanadium-nitride and carbon-nanofiber composites at 400 °C for 30 min, we synthesized a unique architecture electrode with interior void spaces and well-defined pores as well as a uniform carbon layer on the V2O5 nanofiber surface. The optimized C/HPV2O5 electrode postcalcined at 400 °C for 30 min showed improved lithium storage properties with high specific discharge capacities, excellent cycling durability (241 mA h g(-1) at 100 cycles), and improved high-rate performance (155 mA h g(-1) at 1000 mA g(-1)), which is the highest performance in comparison with previously reported V2O5-based cathode materials. The improved electrochemical feature is due to the attractive properties of the carbon-encapsulated hollow porous structure: (I) excellent cycling durability with high specific capacity relative to the adoption of carbon encapsulation as a physical buffer layer and the effective accommodation of volume changes due to the hollow porous structure, (II) improved high-rate performance because of a shorter Li-ion diffusion pathway resulting from interior void spaces and well-defined pores at the surface. This unique electrode structure can potentially provide new cathode materials for high-performance lithium-ion batteries.

18.
Small ; 12(17): 2354-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26938777

RESUMO

Novel electrode materials consisting of hollow cobalt sulfide nanoparticles embedded in graphitic carbon nanocages (HCSP⊂GCC) are facilely synthesized by a top-down route applying room-temperature synthesized Co-based zeolitic imidazolate framework (ZIF-67) as the template. Owing to the good mechanical flexibility and pronounced structure stability of carbon nanocages-encapsulated Co9 S8 , the as-obtained HCSP⊂GCC exhibit superior Li-ion storage. Working in the voltage of 1.0-3.0 V, they display a very high energy density (707 Wh kg(-1) ), superior rate capability (reversible capabilities of 536, 489, 438, 393, 345, and 278 mA h g(-1) at 0.2, 0.5, 1, 2, 5, and 10C, respectively), and stable cycling performance (≈26% capacity loss after long 150 cycles at 1C with a capacity retention of 365 mA h g(-1) ). When the work voltage is extended into 0.01-3.0 V, a higher stable capacity of 1600 mA h g(-1) at a current density of 100 mA g(-1) is still achieved.

19.
J Biomed Mater Res A ; 103(9): 2875-87, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25691137

RESUMO

We synthesized graphitic carbon-coated magnetic nanoparticles (Fe@C NPs) and evaluated their physicochemical properties and mechanism of cytotoxicity in vitro. The structure of these nanocomposites consisted of an iron core encapsulated by a graphitic-carbon shell. The diameter of these Fe@C NPs was 81 ± 14 nm, and the thickness of the carbon layer encapsulating the core was 7.0 ± 0.5 nm. Inhibition of cell proliferation was induced by exposure to Fe@C NPs at doses above 50 µg mL(-1) . The exposed cells did not show increased activation of apoptosis biomarkers such as PARP, caspase-3, caspase-7, and caspase-9, and apoptosis-specific responses such as DNA laddering and annexin V binding to the cell membranes. In addition, the expression levels of autophagy-specific biomarkers such as ATG5 and LC3 after exposure were not enhanced, either. Instead, we observed increased release of lactate dehydrogenase in the culture media and red-fluorescent cell cytosol stained with ethidium homodimer I after the exposure. These results indicated enhanced cell membrane permeability after exposure to Fe@C NPs, probably caused by necrosis. The analysis of the regulatory molecules of cell cycling and proliferation, ERK, p53, and AKT, implied that cell cycle arrest was initiated and the cells were sensitized to necrosis. This necrotic cell death was also observed in carbon shells from Fe@C NPs obtained by removing the metal core. In conclusion, the graphitic carbon-encapsulated magnetic nanoparticles synthesized by one-pot synthesis induced necrotic cell death to human HEK293 cells, which was caused by graphitic carbon surface encapsulating the metal core.


Assuntos
Morte Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/toxicidade , Grafite/toxicidade , Nanopartículas de Magnetita/toxicidade , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Células HEK293 , Humanos , Nanopartículas de Magnetita/ultraestrutura , Teste de Materiais , Nanocompostos/química , Nanocompostos/toxicidade , Nanocompostos/ultraestrutura , Necrose , Tamanho da Partícula
20.
Adv Mater ; 26(34): 6025-30, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25047510

RESUMO

Cathode materials consisting of porous pyrite nano-octahedra encapsulated by uniform carbon nanocages exhibit very high energy density, superior rate capability (reversible capabilities of 439, 340, and 256 mA h g(-1) at 1C, 2.5C, and 5C, respectively) and stable cycling performance (ca. 10% capacity loss after 50 cycles at 0.5C with a capacity retention of 495 mA h g(-1) ).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA