Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Appl Physiol (1985) ; 132(6): 1338-1349, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35482327

RESUMO

Right-ventricular (RV) failure is an event consequent to pathological RV hypertrophy commonly resulting from pulmonary arterial hypertension. This pathology is well characterized by RV diastolic dysfunction, impaired ejection, and reduced mechanical efficiency. However, whether the dynamic stiffness and cross-bridge thermodynamics in the failing RV muscles are compromised remains uncertain. Pulmonary arterial hypertension was induced in the rat by injection of monocrotaline, and RV trabeculae were isolated from RV failing rats. Cross-bridge mechano-energetics were characterized by subjecting the trabeculae to two interventions: 1) force-length work-loop contractions over a range of afterloads while measuring heat output, followed by careful partitioning of heat components into activation heat and cross-bridge heat to separately assess mechanical efficiency and cross-bridge efficiency, and 2) sinusoidal-perturbation of muscle length while trabeculae were actively contracting to interrogate cross-bridge dynamic stiffness. We found that reduced mechanical efficiency is correlated with increased passive stress, reduced shortening, and elevated activation heat. In contrast, the thermodynamics, specifically the efficiency of, and the stiffness characteristics of, cross bridges did not differ between the control and failing trabeculae and were not correlated with elevated passive stress or reduced shortening. We thus conclude that, despite diastolic dysfunction and mechanical inefficiency, cross-bridge stiffness and thermodynamics are unaffected in RV failure following pulmonary arterial hypertension.NEW & NOTEWORTHY This study characterizes cross-bridge mechano-energetics and dynamic stiffness of right-ventricular trabeculae isolated from a rat model of pulmonary hypertensive right-ventricular failure. Failing trabeculae showed increased passive force but normal active force. Their lower mechanical efficiency is found to be driven by an increase in the energy expenditure arising from contractile activation. This does not reflect a change in their cross-bridge stiffness and efficiency.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Animais , Artéria Pulmonar , Ratos , Ratos Wistar , Termodinâmica , Função Ventricular Direita
2.
Acta Physiol (Oxf) ; 231(2): e13545, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32757472

RESUMO

AIM: Altered organization of the transverse-tubular network is an early pathological event occurring even prior to the onset of heart failure. Such t-tubular remodelling disturbs the synchrony and signalling between membranous and intracellular ion channels, exchangers, receptors and ATPases essential in the dynamics of excitation-contraction coupling, leading to ionic abnormality and mechanical dysfunction in heart disease progression. In this study, we investigated whether a disrupted t-tubular network has a direct effect on cardiac mechano-energetics. Our aim was to understand the fundamental link between t-tubular remodelling and impaired energy metabolism, both of which are characteristics of heart failure. We thus studied healthy tissue preparations in which cellular processes are not altered by any disease event. METHODS: We exploited the "formamide-detubulation" technique to acutely disrupt the t-tubular network in rat left-ventricular trabeculae. We assessed the energy utilization by cellular Ca2+ cycling and by crossbridge cycling, and quantified the change of energy efficiency following detubulation. For these measurements, trabeculae were mounted in a microcalorimeter where force and heat output were simultaneously measured. RESULTS: Following structural disorganization from detubulation, muscle heat output associated with Ca2+ cycling was reduced, indicating impaired intracellular Ca2+ homeostasis. This led to reduced force production and heat output by crossbridge cycling. The reduction in force-length work was not paralleled by proportionate reduction in the heat output and, as such, energy efficiency was reduced. CONCLUSIONS: These results reveal the direct energetic consequences of disrupted t-tubular network, linking the energy disturbance and the t-tubular remodelling typically observed in heart failure.


Assuntos
Conservação de Recursos Energéticos , Insuficiência Cardíaca , Animais , Coração , Ventrículos do Coração , Contração Miocárdica , Miócitos Cardíacos , Ratos
3.
Cilia ; 7: 4, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30079247

RESUMO

BACKGROUND: A transient increase in cytosolic Ca2+ (the "Ca2+ transient") determines the degree and duration of myocyte force development in the heart. However, we have previously observed that, under the same experimental conditions, the Ca2+ transients from isolated cardiac myocytes are reduced in amplitude in comparison to those from multicellular cardiac preparations. We therefore questioned whether the enzymatic cell isolation procedure might remove structures that modulate intracellular Ca2+ in some way. Primary cilia are found in a diverse range of cell types, and have an abundance of Ca2+-permeable membrane channels that result in Ca2+ influx when activated. Although primary cilia are reportedly ubiquitous, their presence and function in the heart remain controversial. If present, we hypothesized they might provide an additional Ca2+ entry pathway in multicellular cardiac tissue that was lost during cell isolation. The aim of our study was to look for evidence of primary cilia in isolated myocytes and ventricular tissue from rat hearts. METHODS: Immunohistochemical techniques were used to identify primary cilia-specific proteins in isolated myocytes from adult rat hearts, and in tissue sections from embryonic, neonatal, young, and adult rat hearts. Either mouse anti-acetylated α-tubulin or rabbit polyclonal ARL13B antibodies were used, counterstained with Hoechst dye. Selected sections were also labelled with markers for other cell types found in the heart and for myocyte F-actin. RESULTS: No evidence of primary cilia was found in either tissue sections or isolated myocytes from adult rat ventricles. However, primary cilia were present in tissue sections from embryonic, neonatal (P2) and young (P21 and P28) rat hearts. CONCLUSION: The lack of primary cilia in adult rat hearts rules out their contribution to myocyte Ca2+ homoeostasis by providing a Ca2+ entry pathway. However, evidence of primary cilia in tissue from embryonic and very young rat hearts suggests they have a role during development.

4.
Prog Biophys Mol Biol ; 130(Pt B): 281-287, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28648628

RESUMO

Stretch of myocardium, such as occurs upon increased filling of the cardiac chamber, induces two distinct responses: an immediate increase in twitch force followed by a slower increase in twitch force that develops over the course of several minutes. The immediate response is due, in part, to modulation of myofilament Ca2+ sensitivity by sarcomere length (SL). The slowly developing force response, termed the Slow Force Response (SFR), is caused by a slowly developing increase in intracellular Ca2+ upon sustained stretch. A blunted immediate force response was recently reported for myocardium isolated from homozygous giant titin mutant rats (HM) compared to muscle from wild-type littermates (WT). Here, we examined the impact of titin isoform on the SFR. Right ventricular trabeculae were isolated and mounted in an experimental chamber. SL was measured by laser diffraction. The SFR was recorded in response to a 0.2 µm SL stretch in the presence of [Ca2+]o = 0.4 mM, a bathing concentration reflecting ∼50% of maximum twitch force development at 25 °C. Presence of the giant titin isoform (HM) was associated with a significant reduction in diastolic passive force upon stretch, and ∼50% reduction of the magnitude of the SFR; the rate of SFR development was unaffected. The sustained SL stretch was identical in both muscle groups. Therefore, our data suggest that cytoskeletal strain may underlie directly the cellular mechanisms that lead to the increased intracellular [Ca2+]i that causes the SFR, possibly by involving cardiac myocyte integrin signaling pathways.


Assuntos
Conectina/metabolismo , Miocárdio/metabolismo , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Ratos
5.
Am J Physiol Heart Circ Physiol ; 310(11): H1512-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016583

RESUMO

The relation between heat output and stress production (force per cross-sectional area) of isolated cardiac tissue is a key metric that provides insight into muscle energetic performance. The heat intercept of the relation, termed "activation heat," reflects the metabolic cost of restoring transmembrane gradients of Na(+) and K(+) following electrical excitation, and myoplasmic Ca(2+) concentration following its release from the sarcoplasmic reticulum. At subphysiological temperatures, activation heat is inversely dependent on temperature. Thus one may presume that activation heat would decrease even further at body temperature. However, this assumption is prima facie inconsistent with a study, using intact hearts, which revealed no apparent change in the combination of activation and basal metabolism between 27 and 37°C. It is thus desired to directly determine the change in activation heat between 27 and 37°C. In this study, we use our recently constructed high-thermal resolution muscle calorimeter to determine the first heat-stress relation of isolated cardiac muscle at 37°C. We compare the relation at 37°C to that at 27°C to examine whether the inverse temperature dependence of activation heat, observed under hypothermic conditions, prevails at body temperature. Our results show that activation heat was reduced (from 3.5 ± 0.3 to 2.3 ± 0.3 kJ/m(3)) at the higher temperature. This leads us to conclude that activation metabolism continues to decline as temperature is increased from hypothermia to normothermia and allows us to comment on results obtained from the intact heart by previous investigators.


Assuntos
Regulação da Temperatura Corporal , Metabolismo Energético , Resposta ao Choque Térmico , Hipotermia/metabolismo , Miocárdio/metabolismo , Animais , Calorimetria/instrumentação , Estimulação Cardíaca Artificial , Hipotermia/fisiopatologia , Técnicas In Vitro , Masculino , Modelos Cardiovasculares , Contração Miocárdica , Ratos Wistar
6.
Clin Exp Pharmacol Physiol ; 43(1): 88-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26466753

RESUMO

Recently, a family of guanine nucleotide exchange factors have been identified in many cell types as important effectors of cyclic adenosine 3',5'-monophospahte (cAMP) signalling that is independent of protein kinase A (PKA). In the heart, investigation of exchange protein directly activated by cAMP (Epac) has yielded conflicting results. Since cAMP is an important regulator of cardiac contractility, this study aimed to examine whether Epac activation modulates excitation-contraction coupling in ventricular preparations from rat hearts. The study used 8-(4-chlorophenylthio)-2'-O-methyladenosine-3', 5'-cyclic monophosphate (cpTOME), an analogue of cAMP that activates Epac, but not PKA. In isolated myocytes, cpTOME increased Ca(2+) spark frequency from about 7 to 32/100 µm(3)/s (n = 10), P = 0.05 with a reduction in the peak amplitude of the sparks. Simultaneous measurements of intracellular Ca(2+) and isometric force in multicellular trabeculae (n = 7, 1.5 mmol/L [Ca(2+)]o) revealed no effect of Epac activation on either the amplitude of Ca(2+) transients (Control 0.7 ± 0.1 vs cpTOME 0.7 ± 0.1; 340/380 fura-2 ratio, P = 0.35) or on peak stress (Control 24 ± 5 mN/mm(2) vs cpTOME 23 ± 5 mN/mm(2), P = 0.20). However, an effect of Epac in trabeculae was unmasked by lowering extracellular [Ca(2+)]o. In these depotentiated trabeculae, activation of the Epac pathway increased myofilament Ca(2+) sensitivity, an effect that was blocked by addition of KN-93, a Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) inhibitor. This study suggests that Epac activation may be a useful therapeutic target to increase the strength of contraction during low inotropic states.


Assuntos
Cálcio/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Depressão Sináptica de Longo Prazo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Animais , Acoplamento Excitação-Contração , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/fisiologia , Ratos
7.
Pharmacol Ther ; 141(3): 235-49, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24140081

RESUMO

The mammalian heart is responsible for not only pumping blood throughout the body but also adjusting this pumping activity quickly depending upon sudden changes in the metabolic demands of the body. For the most part, the human heart is capable of performing its duties without complications; however, throughout many decades of use, at some point this system encounters problems. Research into the heart's activities during healthy states and during adverse impacts that occur in disease states is necessary in order to strategize novel treatment options to ultimately prolong and improve patients' lives. Animal models are an important aspect of cardiac research where a variety of cardiac processes and therapeutic targets can be studied. However, there are differences between the heart of a human being and an animal and depending on the specific animal, these differences can become more pronounced and in certain cases limiting. There is no ideal animal model available for cardiac research, the use of each animal model is accompanied with its own set of advantages and disadvantages. In this review, we will discuss these advantages and disadvantages of commonly used laboratory animals including mouse, rat, rabbit, canine, swine, and sheep. Since the goal of cardiac research is to enhance our understanding of human health and disease and help improve clinical outcomes, we will also discuss the role of human cardiac tissue in cardiac research. This review will focus on the cardiac ventricular contractile and relaxation kinetics of humans and animal models in order to illustrate these differences.


Assuntos
Cardiopatias/fisiopatologia , Modelos Animais , Contração Miocárdica/fisiologia , Animais , Modelos Animais de Doenças , Cardiopatias/terapia , Ventrículos do Coração/metabolismo , Humanos , Especificidade da Espécie , Função Ventricular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA