Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Med Phys ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255333

RESUMO

BACKGROUND: Residual stenosis (RS) and hemodynamics demonstrate a significant correlation with postoperative in-stent restenosis/thrombosis following carotid artery stenting (CAS). PURPOSE: This study endeavors to elucidate the potential associations between RS and adverse postoperative hemodynamic factors. METHODS: This study utilized 46 patient-specific carotid artery models post-stenting, which were categorized into two groups based on the presence of RS: the normal group (N, n = 23) and the RS group (RS, n = 23). A comparative analysis was conducted to evaluate the discrepancies in geometry and adverse hemodynamic parameters, alongside investigating the potential correlation between hemodynamic and geometric parameters. RESULTS: The results reveal that a higher reflux flow volume is discernible in the RS group during low-velocity phases of the cardiac cycle, concomitant with an augmented extent of areas exposed to oscillatory shear stress and extended particle residence time. Moreover, the adverse hemodynamic parameters exhibit a positive correlation with the degree of stent expansion, stent length in the common carotid artery (CCA), and the distal slope of the RS. CONCLUSION: The distal slope and tortuosity of RS significantly influence the development of adverse hemodynamic conditions post-stenting, exacerbating the hemodynamic environment near the stenosis. Interestingly, while an extended stent length in the internal carotid artery (ICA) region improves hemodynamics by reducing flow disturbance, a longer stent in the CCA significantly worsens these conditions. Hence, it is prudent to analyze the characteristics of the local lesion regions to optimize the strategy for stent implantation.

2.
Quant Imaging Med Surg ; 14(7): 4348-4361, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39022224

RESUMO

Background: Ischemic stroke, which has a high incidence, disability, and mortality rate, is mainly caused by carotid atherosclerotic plaque. The difference in the geometric structures of the carotid arteries inevitably leads to the variability in the local hemodynamics, which plays a key role in the formation of carotid atherosclerosis. At present, the combined mechanisms of hemodynamic and geometric in the formation of carotid atherosclerotic plaque are not clear. Thus, this study characterized the geometric and hemodynamic characteristics of carotid atherosclerotic plaque formation using four-dimensional (4D) flow magnetic resonance imaging (MRI). Methods: Ultimately, 122 carotid arteries from 61 patients were examined in this study. According to the presence of plaques at the bifurcation of the carotid artery on cervical vascular ultrasound (US), carotid arteries were placed into a plaque group (N=69) and nonplaque group (N=53). The ratio of the maximum internal carotid artery (ICA) inner diameter to the maximum common carotid artery (CCA) inner diameter (ICA-CCA diameter ratio), bifurcation angle, and tortuosity were measured using neck three-dimensional time-of-flight magnetic resonance angiography (3D TOF-MRA). Meanwhile, 4D flow MRI was used to obtain the following hemodynamic parameters of the carotid arteries: volume flow rate, velocity, wall shear stress (WSS), and pressure gradient (PG). Independent sample t-tests were used to compare carotid artery geometry and hemodynamic changes between the plaque group and nonplaque group. Results: The ICA-CCA diameter ratio between the plaque group and the nonplaque group was not significantly different (P=0.124), while there were significant differences in the bifurcation angle (P=0.005) and tortuosity (P=0.032). The bifurcation angle of the plaque group was greater than that of the nonplaque group (60.70°±20.75° vs. 49.32°±22.90°), and the tortuosity was smaller than that of the nonplaque group (1.07±0.04 vs. 1.09±0.05). There were no significant differences between the two groups in terms of volume flow rate (P=0.351) and the maximum value of velocity (velocitymax) (P=0.388), but the axial, circumferential, and 3D WSS values were all significantly different, including their mean values (all P values <0.001) and the maximum value of 3D WSS (P<0.001), with the mean axial, circumferential, 3D WSS values, along with the maximum 3D WSS value, being lower in the plaque group. The two groups also differed significantly in terms of maximum PG value (P=0.030) and mean PG value (P=0.026), with these values being greater in the nonplaque group than in the plaque group. Conclusions: A large bifurcation angle and a low tortuosity of the carotid artery are geometric risk factors for plaque formation in this area. Low WSS and low PG values are associated with carotid atherosclerotic plaque formation.

3.
Front Cardiovasc Med ; 10: 1177998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37378412

RESUMO

Introduction: Complicated carotid artery plaques (cCAPs) are associated with an increased risk of rupture and subsequent stroke. The geometry of the carotid bifurcation determines the distribution of local hemodynamics and could thus contribute to the development and composition of these plaques. Therefore, we studied the role of carotid bifurcation geometry in the presence of cCAPs. Methods: We investigated the association of individual vessel geometry with carotid artery plaque types in the Carotid Plaque Imaging in Acute Stroke (CAPIAS) study. After excluding arteries without plaque or with insufficient MRI quality, 354 carotid arteries from 182 patients were analyzed. Individual parameters of carotid geometry [i.e., internal carotid artery (ICA)/common carotid artery (CCA) ratio, bifurcation angle, and tortuosity) were derived from time-of-flight MR images. The lesion types of carotid artery plaques were determined according to the American Heart Association classification of lesions by multi-contrast 3T-MRI. The association between carotid geometry and a cCAP was studied using logistic regression after adjusting for age, sex, wall area, and cardiovascular risk factors. Results: Low ICA/CCA ratios (OR per SD increase 0.60 [95%CI: 0.42-0.85]; p = 0.004) and low bifurcation angles (OR 0.61 [95%CI: 0.42-0.90]; p = 0.012) were significantly associated with the presence of cCAPs after adjusting for age, sex, cardiovascular risk factors, and wall area. Tortuosity had no significant association with cCAPs. Only ICA/CCA ratio remained significant in a model containing all three geometric parameters (OR per SD increase 0.65 [95%CI: 0.45-0.94]; p = 0.023). Conclusions: A steep tapering of the ICA relative to the CCA and, to a lesser extent, a low angle of the carotid bifurcation were associated with the presence of cCAPs. Our findings highlight the contribution of bifurcation geometry to plaque vulnerability. Thus, assessment of carotid geometry could be helpful in identifying patients at risk of cCAPs.

4.
J Stroke Cerebrovasc Dis ; 31(8): 106540, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35633588

RESUMO

OBJECTIVES: The internal carotid artery (ICA) angle of origin may contribute to atherogenesis by altered hemodynamics. We aim to determine the contribution of vascular risk factors and arterial wall changes to ICA angle variations. METHODS: We analyzed 1,065 stroke-free participants from the population-based Northern Manhattan Study who underwent B-mode ultrasound (mean age 68.7±8.9 years; 59% women). ICA angle was estimated at the intersection between the common carotid artery and the ICA center line projections. Narrower external angles translating into greater carotid bifurcation bending were considered unfavorable. Linear regression models were fitted to assess the relationship between ICA angle and demographics, vascular risk factors, and arterial wall changes including carotid intima-media thickness (cIMT) and plaque presence. RESULTS: ICA angles were narrower on the left compared to the right side (153±15.4 degrees versus 161.4±12.7 degrees, p<0.01). Mean cIMT was 0.9±0.1 mm and 54.3% had at least one plaque. ICA angle was not associated with cIMT or plaque presence. Unfavorable left and right ICA angles were associated with advanced age (per 10-year increase ß=-1.6; p=0.01, and -1.3; p=0.03, respectively) and being Black participant (ß=-4.6; p<0.01 and -2.9; p=0.04, respectively), while unfavorable left ICA angle was associated with being female (ß=-2.8; p=0.03) and increased diastolic blood pressure (per 10 mmHg increase ß=-2.1; p<0.01). Overall, studied factors explained less than 10% of the variance in ICA angle (left R2=0.07; right R2=0.05). CONCLUSION: Only a small portion of ICA angle variation were explained by demographics, vascular risk factors and arterial wall changes. Whether ICA angle is determined by other environmental or genetic factors, and is an independent risk factor for atherogenesis, requires further investigation.


Assuntos
Aterosclerose , Placa Aterosclerótica , Idoso , Artérias Carótidas/diagnóstico por imagem , Artéria Carótida Primitiva/diagnóstico por imagem , Artéria Carótida Interna/diagnóstico por imagem , Espessura Intima-Media Carotídea , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
5.
J Cardiovasc Magn Reson ; 22(1): 67, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912285

RESUMO

BACKGROUND: The posterior wall of the proximal internal carotid artery (ICA) is the predilection site for the development of stenosis. To optimally prevent stroke, identification of new risk factors for plaque progression is of high interest. Therefore, we studied the impact of carotid geometry and wall shear stress on cardiovascular magnetic resonance (CMR)-depicted wall thickness in the ICA of patients with high cardiovascular disease risk. METHODS: One hundred twenty-one consecutive patients ≥50 years with hypertension, ≥1 additional cardiovascular risk factor and ICA plaque ≥1.5 mm thickness and < 50% stenosis were prospectively included. High-resolution 3D-multi-contrast (time of flight, T1, T2, proton density) and 4D flow CMR were performed for the assessment of morphological (bifurcation angle, ICA/common carotid artery (CCA) diameter ratio, tortuosity, and wall thickness) and hemodynamic parameters (absolute/systolic wall shear stress (WSS), oscillatory shear index (OSI)) in 242 carotid bifurcations. RESULTS: We found lower absolute/systolic WSS, higher OSI and increased wall thickness in the posterior compared to the anterior wall of the ICA bulb (p < 0.001), whereas this correlation disappeared in ≥10% stenosis. Higher carotid tortuosity (regression coefficient = 0.764; p < 0.001) and lower ICA/CCA diameter ratio (regression coefficient = - 0.302; p < 0.001) were independent predictors of increased wall thickness even after adjustment for cardiovascular risk factors. This association was not found for bifurcation angle, WSS or OSI in multivariate regression analysis. CONCLUSIONS: High carotid tortuosity and low ICA diameter were independent predictors for wall thickness of the ICA bulb in this cross-sectional study, whereas this association was not present for WSS or OSI. Thus, consideration of geometric parameters of the carotid bifurcation could be helpful to identify patients at increased risk of carotid plaque generation. However, this association and the potential benefit of WSS measurement need to be further explored in a longitudinal study.


Assuntos
Doenças das Artérias Carótidas/diagnóstico por imagem , Artéria Carótida Interna/diagnóstico por imagem , Hemodinâmica , Angiografia por Ressonância Magnética , Idoso , Doenças das Artérias Carótidas/fisiopatologia , Artéria Carótida Interna/fisiopatologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Fluxo Sanguíneo Regional , Fatores de Risco , Estresse Mecânico
6.
Biomed Eng Online ; 18(1): 87, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391047

RESUMO

BACKGROUND: Carotid artery geometry is important for recapitulating a pathophysiological microenvironment to study wall shear stress (WSS)-induced endothelial dysfunction in atherosclerosis. Endothelial cells (ECs) cultured with hydrogel have been shown to exhibit in vivo-like behaviours. However, to date, studies using hydrogel culture have not fully recapitulated the 3D geometry and blood flow patterns of real-life healthy or diseased carotid arteries. In this study, we developed a gelatin-patterned, endothelialized carotid artery model to study the endothelium response to WSS. RESULTS: Two representative regions were selected based on the computational fluid dynamics on the TF-shaped carotid artery: Region ECA (external carotid artery) and Region CS (carotid sinus). Progressive elongation and alignment of the ECs in the flow direction were observed in Region ECA after 8, 16 and 24 h. However, the F-actin cytoskeleton remained disorganized in Region CS after 24 h. Further investigation revealed that expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) was greatly increased in Region CS relative to that in Region ECA. The physiological WSS in the carotid artery system was found to stimulate nitric oxide (NO) and prostacyclin (PGI2) release and inhibit endothelin-1 (ET-1) release after 24-h perfusion experiments. The effective permeability (E.P) of fluorescein isothiocyanate (FITC)-dextran 40 kDa in Regions ECA and CS was monitored, and it was found that the turbulence WSS value (in Region CS) was less than 0.4 Pa, and there was a significant increase in the E.P relative to that in Region ECA, in which laminar WSS value was 1.56 Pa. The tight junction protein (ZO-1) production was shown that the low WSS in Region CS induced ZO-1-level downregulation compared with that in Region ECA. CONCLUSIONS: The results suggested that the gelatin-based perfusable, endothelial carotid artery model can be effective for studying the pathogenesis of atherosclerosis by which flow dynamics control the endothelium layer function in vitro.


Assuntos
Aterosclerose/patologia , Biomimética/instrumentação , Artérias Carótidas/patologia , Células Endoteliais/patologia , Gelatina , Actinas/metabolismo , Aterosclerose/fisiopatologia , Artérias Carótidas/fisiopatologia , Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Análise de Elementos Finitos , Hemodinâmica , Hidrodinâmica , Permeabilidade
7.
Angiology ; 68(9): 757-764, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28164715

RESUMO

Hemodynamic changes occurring at the initial segments of the arterial bifurcations appear to play an important role in the development of atherosclerotic plaque. Therefore, arterial geometry might be a potential marker for atherosclerosis. Considerable evidence suggests that geometry can influence local hemodynamics at the carotid bifurcation contributing to the development of atheroma. Bifurcation angle, differences in the area ratios including the flare, proximal curvature, sinus bulb width, and tortuosity of the internal or external carotid artery have been listed as potential contributory elements. These morphometric details have been studied not only in postmortem examination but also with the help of imaging modalities such as ultrasound, digital subtraction angiography, computed tomography angiography, and the assistance of computational models and magnetic resonance angiography. The establishment of certain anatomical and geometrical details in addition to traditional risk factors may help in the identification of patients at high risk of developing carotid artery disease. We reviewed the literature to highlight the evidence on the importance of various geometrical details in the development of carotid atheroma and to suggest areas of future research.


Assuntos
Aterosclerose/patologia , Doenças das Artérias Carótidas/patologia , Artéria Carótida Externa/patologia , Artéria Carótida Interna/patologia , Animais , Aterosclerose/diagnóstico , Doenças das Artérias Carótidas/diagnóstico , Simulação por Computador , Humanos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA