Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Int J Biol Macromol ; : 133991, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39089904

RESUMO

Galactooligosaccharides (GOS), as mimics of human milk oligosaccharides, are important prebiotics for modulating the ecological balance of intestinal microbiota. A novel carrier-free cell immobilization method was established using genipin to cross-link Kluyveromyces lactis CGMCC 2.1494, which produced ß-galactosidase, an enzyme essential for GOS synthesis. The resulting immobilized cells were characterized as stable by thermogravimetric analysis and confirmed to be crosslinked through scanning electron microscopy analysis (SEM) and Fourier transform infrared spectroscopy (FTIR). The Km and Vmax values of ß-galactosidase in immobilized cells towards o-nitrophenyl ß-D-galactoside were determined to be 3.446 mM and 2210 µmol min-1 g-1, respectively. The enzyme in the immobilized showed higher thermal and organic solvent tolerance compared to that in free cells. The immobilized cells were subsequently employed for GOS synthesis using plant-derived galactose as the substrate. The synthetic reaction conditions were optimized through both single-factor experiments and response surface methodology, resulting in a high yield of 49.1 %. Moreover, the immobilized cells showed good reusability and could be reused for at least 20 batches of GOS synthesis, with the enzyme activity remaining above 70 % at 35 °C.

2.
Biomed Pharmacother ; 178: 117258, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39111083

RESUMO

Carrier-free nanodrugs are a novel type of drug constructed by the self-assembly of drug molecules without carrier involvement. They have the characteristics of small particle size, easy penetration of various barriers, targeting tumors, and efficient release. In recent years, carrier-free nanodrugs have become a hot topic in tumor therapy as they solve the problems of low drug loading, poor biocompatibility, and low uptake efficiency of carrier nanodrugs. A series of recent studies have shown that carrier-free nanodrugs play a vital role in the treatment of various tumors, with similar or better effects than carrier nanodrugs. Based on the literature published in the past decades, this paper first summarizes the recent progress in the assembly modes of carrier-free nanodrugs, then describes common therapeutic modalities of carrier-free nanodrugs in tumor therapy, and finally depicts the existing challenges along with future trends of carrier-free nanodrugs. We hope that this review can guide the design and application of carrier-free nanodrugs in the future.

3.
Biomaterials ; 312: 122723, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39121732

RESUMO

The challenges generated by insufficient T cell activation and infiltration have constrained the application of immunotherapy. Making matters worse, the complex tumor microenvironment (TME), resistance to apoptosis collectively poses obstacles for cancer treatment. The carrier-free small molecular self-assembly strategy is a current research hotspot to overcome these challenges. This strategy can transform multiple functional agents into sustain-released hydrogel without the addition of any excipients. Herein, a coordination and hydrogen bond mediated tricomponent hydrogel (Cel hydrogel) composed of glycyrrhizic acid (GA), copper ions (Cu2+) and celastrol (Cel) was initially constructed. The hydrogel can regulate TME by chemo-dynamic therapy (CDT), which increases reactive oxygen species (ROS) in conjunction with GA and Cel, synergistically expediting cellular apoptosis. What's more, copper induced cuproptosis also contributes to the anti-tumor effect. In terms of regulating immunity, ROS generated by Cel hydrogel can polarize tumor-associated macrophages (TAMs) into M1-TAMs, Cel can induce T cell proliferation as well as activate DC mediated antigen presentation, which subsequently induce T cell proliferation, elevate T cell infiltration and enhance the specific killing of tumor cells, along with the upregulation of PD-L1 expression. Upon co-administration with aPD-L1, this synergy mitigated both primary and metastasis tumors, showing promising clinical translational value.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39126575

RESUMO

5-Fluorouracil (5-FU) is commonly used as a chemotherapeutic drug for advanced HCC. However, the effectiveness of 5-FU is limited by the emergence of resistance and poor targeting efficiency. Combining 5-FU with natural compounds has shown promise in HCC treatment. In this study, we prepared carrier-free nanoparticles (GEN-Cu-GEN@FUA) containing 5-FU and genistein (GEN) in a synergistic ratio via a green synthesis procedure. The resulting GEN-Cu-GEN@FUA nanoparticles had a spherical or near spherical shape, a dynamic size of 129.3 ± 40.1 nm, and a high drug loading content of approximately 21.40% (5-FU) and 61.48% (GEN). These nanoparticles exhibited approximately 3.6-fold lower IC50 value than 5-FU alone in Bel-7402 cells and resulted in a 3.7-fold greater reduction in tumor weight compared to 5-FU alone in Bel-7402 tumor-bearing BALB/c mice. Importantly, the nanoparticles showed negligible systemic toxicity due to their synergistic effect on cancer cell dysfunction and significant amplification of intracellular glutathione consumption. Our findings suggest that the developed carrier-free nanomedicines offer a highly promising platform for the co-delivery of genistein (GEN) copper(II) complexes and 5-FU, with easy fabrication and great potential for clinical translation in HCC synergistic therapy.

5.
Int J Pharm ; 662: 124496, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033943

RESUMO

Chemo-photodynamic synergistic therapy (CPST) holds tremendous promise for treating cancers. Unfortunately, existing CPST applications suffer from complex synthetic procedures, low drug co-loading efficiency, and carrier-related toxicity. To address these issues, we have developed a supramolecular carrier-free self-sensitized nanoassemblies by co-assembling podophyllotoxin (PTOX) and chlorin e6 (Ce6) to enhance CPST efficiency against tumors. The nanoassemblies show stable co-assembly performance in simulative vivo neural environment (∼150 nm), with high co-loading ability for PTOX (72.2 wt%) and Ce6 (27.8 wt%). In vivo, the nanoassemblies demonstrate a remarkable ability to accumulate at tumor sites by leveraging the enhanced permeability and retention (EPR) effect. The disintegration of nanoassemblies following photosensitizer bioactivation triggered by the acidic tumor environment effectively resolves the challenge of aggregation-caused quenching (ACQ) effect. Upon exposure to external light stimulation, the disintegrated nanoassemblies not only illuminate cancer cells synergistically but also exert a more potent antitumor effect when compared with PTOX and Ce6 administered alone. This self-sensitized strategy represents a significant step forward in CPST, offering a unique co-delivery paradigm for clinic cancer treatment.

6.
Int J Biol Macromol ; 276(Pt 1): 133873, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39013505

RESUMO

In this study, based on the self-assembly strategy, we fused CipA with carbonyl reductase LXCARS154Y derived from Leifsonia xyli by gene coding, and successfully performed the carrier-free immobilization of LXCARS154Y. The immobilized enzyme was then characterized using scanning electron microscope (SEM), dynamic light scattering (DLS) and fourier transform infrared spectroscopy (FTIR). Compared with the free enzyme, the immobilized LXCARS154Y exhibited a 2.3-fold improvement in the catalytic efficiency kcat/km for the synthesis of a chiral pharmaceutical intermediate (R)-3,5-bis(trifluoromethyl)phenyl ethanol ((R)-BTPE) by reducing 3,5-bis(trifluoromethyl)acetophenone (BTAP). Moreover, the immobilized enzyme showed the enhanced stability while maintaining over 61 % relative activity after 18 cycles of batch reaction. Further, when CipA-fused carbonyl reductase was employed for (R)-BTPE production in a continuous flow reaction, almost complete yield (97.0 %) was achieved within 7 h at 2 M (512.3 g/L) of BTAP concentration, with a space-time yield of 1717.1 g·L-1·d-1. Notably, we observed the retention of cofactor NADH by CipA-based enzyme aggregates, resulting in a higher total turnover number (TTN) of 4815 to facilitate this bioreductive process. This research developed a concise strategy for efficient preparation of chiral intermediate with cofactor self-sufficiency via continuous flow biocatalysis, and the relevant mechanism was also explored.

7.
ACS Nano ; 18(28): 18230-18245, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38950337

RESUMO

Therapy-induced modulation of the tumor microenvironment (TME) to overcome the immunosuppressive TME is considered to be an opportunity for cancer treatment. However, monitoring of TME modulation during the therapeutic process to accurately determine immune responses and adjust treatment plans in a timely manner remains to be challenging. Herein, we report a carrier-free nanotheranostic system (CANPs) assembled by two boron dipyrromethene (BODIPY) dyes, a sonophotosensitizer C-BDP, and a nitric oxide (NO) probe amino-BODIPY (A-BDP). CANPs can exert combined sonophototherapeutic effects of C-BDP under ultrasound and light irradiation and simultaneously induce inflammatory TME, as well as emit bright fluorescence via A-BDP by monitoring tumor-associated macrophages (TAMs) repolarization through the released NO in vitro and in vivo. Of note, transforming growth factor-ß (TGF-ß) could be the key cytokine involved in the sonophototherapy-induced TME reprogramming. By virtue of high physiological stability, good biocompatibility, and effective tumor targetability, CANPs could be a potential nanotheranostic system for the simultaneous induction and detection of TME reprogramming triggered by sonophototherapy.


Assuntos
Nanomedicina Teranóstica , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Camundongos , Porfobilinogênio/análogos & derivados , Porfobilinogênio/química , Porfobilinogênio/farmacologia , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Compostos de Boro/química , Compostos de Boro/farmacologia , Óxido Nítrico/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Feminino , Nanopartículas/química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Células RAW 264.7
8.
Adv Sci (Weinh) ; : e2405583, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984484

RESUMO

The clinical translation of tumor hypoxia intervention modalities still falls short of expectation, restricted by poor biocompatibility of oxygen-carrying materials, unsatisfactory oxygen loading performance, and abnormally high cellular oxygen consumption-caused insufficient hypoxia relief. Herein, a carrier-free oxygen nano-tank based on modular fluorination prodrug design and co-assembly nanotechnology is elaborately exploited, which is facilely fabricated through the molecular nanoassembly of a fluorinated prodrug (FSSP) of pyropheophorbide a (PPa) and an oxygen consumption inhibitor (atovaquone, ATO). The nano-tank adeptly achieves sufficient oxygen enrichment while simultaneously suppressing oxygen consumption within tumors for complete tumor hypoxia alleviation. Significant, the fluorination module in FSSP not only confers favorable co-assemblage of FSSP and ATO, but also empowers the nanoassembly to readily carry oxygen. As expected, it displays excellent oxygen carrying capacity, favorable pharmacokinetics, on-demand laser-triggerable ATO release, closed-loop tumor hypoxia relief, and significant enhancement to PPa-mediated PDT in vitro and in vivo. This study provides a novel nanotherapeutic paradigm for tumor hypoxia intervention-enhanced cancer therapy.

9.
Appl Radiat Isot ; 211: 111416, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968702

RESUMO

The 32P radioisotope, with a half-life of 14.3 days and an energy level of 1.71 MeV, has diverse applications in medicine and research. Consequently, producing a carrier-free 32P radioisotope characterized by high radiochemical and radionuclide purity is imperative. Two primary methods for generating 32P radioisotopes exist: irradiating phosphorus through the nuclear reaction (n,γ) or irradiating sulfur through the nuclear reaction (n,p). Using sulfur as a target material provides several advantages. Besides the fact that the chemical element produced after irradiation (32P) differs from the irradiated element (32S), it also produces a32P radioisotope with a higher specific activity than using 31P as the target. The production of the radioisotope 32P from sulfur employs the dry distillation method, capitalizing on sulfur's easily sublimated nature. The volatility of sulfur when heated makes it easy to separate the resulting sulfur and radioisotope 32P without the need for additional reagents. This research aims to establish a practical method for producing the 32P radioisotope using the dry distillation technique. The dry distillation method utilizes a quartz ampoule containing a mixture of 32P and 35S radionuclides, a distillation tube wrapped with heating tape, and a condenser to collect the distilled sulfur. Sulfur, serving as the target material, undergoes irradiation in the reactor at the Central Irradiation Position (CIP) through the 32S(n,p)32P nuclear reaction with a fast neutron flux of 5.380 × 1013 n/cm2.sec. Separation is achieved through distillation at a temperature of 440 °C. The residual separation products are then dissolved in a 0.1 N HCl solution. The purification process involves using an AG50 WX8 cation exchange resin column, which is pre-conditioned with 0.1 N HCl. The resulting eluate contains the 32P radioisotope. The radiochemical purity of the 32P radioisotope is analyzed using thin-layer chromatography (TLC). In this analysis, a PEI Cellulose plate serves as the stationary phase, and a KH2PO4 solution acts as the mobile phase. This vacuum-free distillation method successfully separates the 32P radioisotope from sulfur, achieving a separation efficiency of 55.1 ± 9.9% (n = 7). The average activity produced after the purification process is 5.690E+10 Bq. Purifying the 32P radioisotope results in a radiochemical purity of 99.97% at Rf 0.7110, as orthophosphate, the radionuclide purity exceeds 99%.

10.
ACS Nano ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034461

RESUMO

Abnormal tumor metabolism creates a complex tumor immune microenvironment that plays a dominant role in the metastasis of triple-negative breast cancer (TNBC). TNBC is insensitive to immune checkpoint blockade (ICB) therapy because of insufficient cytotoxic T lymphocyte (CTL) infiltration and a hyper-lactic acid-suppressive immune microenvironment caused by abnormal glycolysis. Herein, we propose an amplified strategy based on lactic acid regulation to reprogram the immunosuppressive tumor microenvironment (ITM) and combine it with ICB therapy to achieve enhanced antitumor immunotherapy effects. Specifically, we constructed CASN, a carrier-free photodynamic bioregulator, through the self-assembly of the photosensitizer Chlorin e6 and monocarboxylate transporter 1 (MCT1) inhibitor AZD3965. CASN exhibited a uniform structure, good stability, and drug accumulation at the tumor site. CASN-mediated photodynamic therapy following laser irradiation inhibited primary tumor growth and induced immunogenic cell death. Furthermore, CASN reduced lactic acid-mediated regulatory T cell generation and M2 tumor-associated macrophage polarization by blocking MCT1-mediated lactic acid efflux to attenuate immune suppression, inducing the recruitment and activation of CTLs. Ultimately, CASN-mediated immunopotentiation combined with ICB therapy considerably strengthened tumor immunotherapy and effectively inhibited tumor growth and metastasis of TNBC. This synergistic amplification strategy overcomes the limitations of an acidic ITM and presents a potential clinical treatment option for metastatic tumors.

12.
Mater Today Bio ; 26: 101094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38854952

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) is a major challenge to neuronal survival in acute ischemic stroke (AIS). However, effective neuroprotective agents remain to be developed for the treatment of CIRI. In this work, we have developed an Anti-TRAIL protein-modified and indocyanine green (ICG)-responsive nanoagent (Anti-TRAIL-ICG) to target ischemic areas and then reduce CIRI and rescue the ischemic penumbra. In vitro and in vivo experiments have demonstrated that the carrier-free nanoagent can enhance drug transport across the blood-brain barrier (BBB) in stroke mice, exhibiting high targeting ability and good biocompatibility. Anti-TRAIL-ICG nanoagent played a better neuroprotective role by reducing apoptosis and ferroptosis, and significantly improved ischemia-reperfusion injury. Moreover, the multimodal imaging platform enables the dynamic in vivo examination of multiple morphofunctional information, so that the dynamic molecular events of nanoagent can be detected continuously and in real time for early treatment in transient middle cerebral artery occlusion (tMCAO) models. Furthermore, it has been found that Anti-TRAIL-ICG has great potential in the functional reconstruction of neurovascular networks through optical coherence tomography angiography (OCTA). Taken together, our work effectively alleviates CIRI after stoke by blocking multiple cell death pathways, which offers an innovative strategy for harnessing the apoptosis and ferroptosis against CIRI.

13.
Sci Total Environ ; 943: 173821, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866165

RESUMO

Nanoformulations of pesticides are an effective way to increase utilization efficiency and alleviate the adverse impacts on the environments caused by conventional pesticide formulations. However, the complex preparation process, high cost, and potential environmental risk of nanocarriers severely restricted practical applications of carrier-based pesticide nanoformulations in agriculture. Herein, carrier-free self-assembled nanoparticles (FHA-PRO NPs) based on fenhexamid (FHA) and prochloraz (PRO) were developed by a facile co-assembly strategy to improve utilization efficiency and reduce toxicity to aquatic organism of pesticides. The results showed that noncovalent interactions between negatively charged FHA and positively charged PRO led to core-shell structured nanoparticles arranged in an orderly manner dispersing in aqueous solution with a diameter of 256 nm. The prepared FHA-PRO NPs showed a typical pH-responsive release profile and exhibited excellent physicochemical properties including low surface tension and high max retention. The photostability of FHA-PRO NPs was improved 2.4 times compared with free PRO. The FHA-PRO NPs displayed superior fungicidal activity against Sclerotinia sclerotiorum and Botrytis cinerea and longer duration against Sclerotinia sclerotiorum on potted rapeseed plants. Additionally, the FHA-PRO NPs reduced the acute toxicity of PRO to zebrafish significantly. Therefore, this work provided a promising strategy to develop nanoformulations of pesticides with stimuli-responsive controlled release characteristics for precise pesticide delivery.


Assuntos
Fungicidas Industriais , Imidazóis , Nanopartículas , Poluentes Químicos da Água , Nanopartículas/toxicidade , Nanopartículas/química , Animais , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Imidazóis/química , Imidazóis/toxicidade , Fungicidas Industriais/toxicidade , Fungicidas Industriais/química , Peixe-Zebra , Organismos Aquáticos/efeitos dos fármacos , Praguicidas/toxicidade , Praguicidas/química , Botrytis/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos
14.
Pharmaceutics ; 16(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931928

RESUMO

Carrier-free nanoparticulate formulations are an advantageous platform for the oral administration of insoluble drugs with the expectation of improving their bioavailability. However, the key limitation of exploiting carrier-free nanoparticulate formulations is the controlled preparation of drug nanoparticles on the basis of rational prescription design. In the following study, we used curcumin (Cur) and piperine (Pip) as model water-insoluble drugs and developed a new method for the controlled preparation of carrier-free drug nanoparticles via multidrug co-assembly in a high-gravity environment. Encouraged by the controlled regulation of the nucleation and crystal growth rate of high-gravity technology accomplished by a rotating packed bed, co-amorphous Cur-Pip co-assembled multidrug nanoparticles with a uniform particle size of 130 nm were successfully prepared, exhibiting significantly enhanced dissolution performance and in vitro cytotoxicity. Moreover, the hydrogen bonding interactions between Cur and Pip in nanoparticles provide them with excellent re-dispersibility and storage stability. Moreover, the oral bioavailability of Cur was dramatically enhanced as a result of the smaller particle size of the co-assembled nanoparticles and the effective metabolic inhibitory effect of Pip. The present study provides a controlled approach to preparing a carrier-free nanoparticulate formulation through a multidrug co-assembly process in the high-gravity field to improve the oral bioavailability of insoluble drugs.

15.
ACS Biomater Sci Eng ; 10(7): 4347-4358, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38841860

RESUMO

In order to improve the effectiveness of tumor treatment and reduce the toxic side effects of drugs, we formed carrier-free multifunctional nanoparticles (BI NPs) by noncovalent interaction of berberine hydrochloride and IR780. BI NPs possessed the synergistic effects of promoting apoptosis, inhibiting proliferation and metastasis of tumors, and phototherapeutic treatment. Dispersive and passive targeting ability retention (EPR) effects of BI NPs on tumor sites in vivo could be monitored by fluorescence imaging. In addition, BI NPs exhibited effective reactive oxygen species (ROS) generation and photothermal conversion capabilities, photodynamic therapy (PDT), and photothermal therapy (PTT). Importantly, BI NPs inhibit tumor suppression through the AMPK/PI3K/AKT signaling pathway to inhibit tumor proliferation and metastasis. BI NPs not only have efficient in vivo multimodal therapeutic effects but also have good biosafety and potential clinical applications.


Assuntos
Apoptose , Carcinoma Hepatocelular , Proliferação de Células , Neoplasias Hepáticas , Nanomedicina , Nanopartículas , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Humanos , Proliferação de Células/efeitos dos fármacos , Animais , Nanopartículas/química , Nanopartículas/uso terapêutico , Nanomedicina/métodos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Berberina/farmacologia , Berberina/química , Berberina/uso terapêutico , Terapia Fototérmica , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico
16.
Food Chem ; 457: 140058, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905825

RESUMO

Carrier-free nanodelivery systems are fully self-assembled from active ingredients through interactions, offering the advantages of green, safe, and large-scale manufacturing. To improve the dispersion of Citrus × limon 'Rosso' peel essential oil (CEO) in water and boost the biological activity of CEO and tea polyphenols (TP), self-assembled CEO-TP colloidal dispersions (CEO-TP Colloids) were fabricated through sonication without surfactants or carriers. The optimal CEO and TP concentrations in the CEO-TP Colloids were determined to be 10.0 and 20.0 mg/mL by particle size and stability analyzer, respectively. The CEO self-assembled with TP to form spherical nanoparticles through hydrophobic and hydrogen-bonding interactions, whereas the CEO in CEO-TP Colloids weakened TP intramolecular aggregation. Meanwhile, the CEO-TP Colloids showed synergistic effects with better antibacterial, cellular antioxidant, and anti-inflammatory activities than single components. This study opens up the possibility of carrier-free co-delivery of hydrophobic and hydrophilic active components developed into food-grade formulations with multiple bioactivities.


Assuntos
Antioxidantes , Citrus , Coloides , Óleos Voláteis , Tamanho da Partícula , Polifenóis , Citrus/química , Coloides/química , Polifenóis/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Antioxidantes/química , Interações Hidrofóbicas e Hidrofílicas , Chá/química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Camundongos , Animais , Nanopartículas/química , Extratos Vegetais/química , Humanos
17.
Adv Sci (Weinh) ; 11(23): e2402516, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582500

RESUMO

Cuproptosis is a newly discovered form of programmed cell death significantly depending on the transport efficacy of copper (Cu) ionophores. However, existing Cu ionophores, primarily small molecules with a short blood half-life, face challenges in transporting enough amounts of Cu ions into tumor cells. This work describes the construction of carrier-free nanoparticles (Ce6@Cu NPs), which self-assembled by the coordination of Cu2+ with the sonosensitizer chlorin e6 (Ce6), facilitating sonodynamic-triggered combination of cuproptosis and ferroptosis. Ce6@Cu NPs internalized by U87MG cells induce a sonodynamic effect and glutathione (GSH) depletion capability, promoting lipid peroxidation and eventually inducing ferroptosis. Furthermore, Cu+ concentration in tumor cells significantly increases as Cu2+ reacts with reductive GSH, resulting in the downregulation of ferredoxin-1 and lipoyl synthase. This induces the oligomerization of lipoylated dihydrolipoamide S-acetyltransferase, causing proteotoxic stress and irreversible cuproptosis. Ce6@Cu NPs possess a satisfactory ability to penetrate the blood-brain barrier, resulting in significant accumulation in orthotopic U87MG-Luc glioblastoma. The sonodynamic-triggered combination of ferroptosis and cuproptosis in the tumor by Ce6@Cu NPs is evidenced both in vitro and in vivo with minimal side effects. This work represents a promising tumor therapeutic strategy combining ferroptosis and cuproptosis, potentially inspiring further research in developing logical and effective cancer therapies based on cuproptosis.


Assuntos
Clorofilídeos , Cobre , Ferroptose , Glioblastoma , Porfirinas , Ferroptose/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/terapia , Animais , Camundongos , Cobre/química , Humanos , Porfirinas/química , Porfirinas/farmacologia , Linhagem Celular Tumoral , Nanopartículas/química , Modelos Animais de Doenças , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo
18.
J Control Release ; 369: 765-774, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593976

RESUMO

The combination of chemotherapy and gene therapy holds great promise for the treatment and eradication of tumors. However, due to significant differences in physicochemical properties between chemotherapeutic agents and functional nucleic acid drugs, direct integration into a single nano-agent is hindered, impeding the design and construction of an effective co-delivery nano-platform for synergistic anti-tumor treatments. In this study, we have developed an mRNA-responsive two-in-one nano-drug for effective anti-tumor therapy by the direct self-assembly of 2'-fluoro-substituted antisense DNA against P-glycoprotein (2'F-DNA) and chemo drug paclitaxel (PTX). The 2'-fluoro modification of DNA could significantly increase the interaction between the therapeutic nucleic acid and the chemotherapeutic drug, promoting the successful formation of 2'F-DNA/PTX nanospheres (2'F-DNA/PTX NSs). Due to the one-step self-assembly process without additional carrier materials, the prepared 2'F-DNA/PTX NSs exhibited considerable loading efficiency and bioavailability of PTX. In the presence of endogenous P-glycoprotein mRNA, the 2'F-DNA/PTX NSs were disassembled. The released 2'F-DNA could down-regulate the expression of P-glycoprotein, which decreased the multidrug resistance of tumor cells and enhanced the chemotherapy effect caused by PTX. In this way, the 2'F-DNA/PTX NSs could synergistically induce the apoptosis of tumor cells and realize the combined anti-tumor therapy. This strategy might provide a new tool to explore functional intracellular co-delivery nano-systems with high bioavailability and exhibit potential promising in the applications of accurate diagnosis and treatment of tumors.


Assuntos
Terapia Genética , Paclitaxel , RNA Mensageiro , RNA Mensageiro/administração & dosagem , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Paclitaxel/química , Humanos , Animais , Terapia Genética/métodos , Linhagem Celular Tumoral , Camundongos Nus , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Camundongos Endogâmicos BALB C , DNA/administração & dosagem , Nanopartículas/química , Feminino
19.
Front Chem ; 12: 1378233, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38591056

RESUMO

Introduction: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer still lacking effective treatment options. Chemotherapy in combination with immunotherapy can restrict tumor progression and repolarize the tumor microenvironment towards an anti-tumor milieu, improving clinical outcome in TNBC patients. The chemotherapeutic drug paclitaxel has been shown to induce immunogenic cell death (ICD), whereas inhibitors of the indoleamine 2,3- dioxygenase 1 (IDO1) enzyme, whose expression is shared in immune regulatory and tumor cells, have been revealed to enhance the anti-tumor immune response. However, poor bioavailability and pharmacokinetics, off-target effects and hurdles in achieving therapeutic drug concentrations at the target tissue often limit the effectiveness of combination therapies. Methods: This work describes the development of novel biomimetic and carrier-free nanobinders (NBs) loaded with both paclitaxel and the IDO1 inhibitor NLG919 in the form of bioresponsive and biomimetic prodrugs. A fine tuning of the preparation conditions allowed to identify NB@5 as the most suitable nanoformulation in terms of reproducibility, stability and in vitro effectiveness. Results and discussion: Our data show that NB@5 effectively binds to HSA in cell-free experiments, demonstrating its protective role in the controlled release of drugs and suggesting the potential to exploit the protein as the endogenous vehicle for targeted delivery to the tumor site. Our study successfully proves that the drugs encapsulated within the NBs are preferentially released under the altered redox conditions commonly found in the tumor microenvironment, thereby inducing cell death, promoting ICD, and inhibiting IDO1.

20.
Pharmacol Res ; 203: 107150, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521285

RESUMO

Cancer, with its diversity, heterogeneity, and complexity, is a significant contributor to global morbidity, disability, and mortality, highlighting the necessity for transformative treatment approaches. Photodynamic therapy (PDT) has aroused continuous interest as a viable alternative to conventional cancer treatments that encounter drug resistance. Nanotechnology has brought new advances in medicine and has shown great potential in drug delivery and cancer treatment. For precise and efficient therapeutic utilization of such a tumor therapeutic approach with high spatiotemporal selectivity and minimal invasiveness, the carrier-free noncovalent nanoparticles (NPs) based on chemo-photodynamic combination therapy is essential. Utilizing natural products as the foundation for nanodrug development offers unparalleled advantages, including exceptional pharmacological activity, easy functionalization/modification, and well biocompatibility. The natural-product-based, carrier-free, noncovalent NPs revealed excellent synergistic anticancer activity in comparison with free photosensitizers and free bioactive natural products, representing an alternative and favorable combination therapeutic avenue to improve therapeutic efficacy. Herein, a comprehensive summary of current strategies and representative application examples of carrier-free noncovalent NPs in the past decade based on natural products (such as paclitaxel, 10-hydroxycamptothecin, doxorubicin, etoposide, combretastatin A4, epigallocatechin gallate, and curcumin) for tumor chemo-photodynamic combination therapy. We highlight the insightful design and synthesis of the smart carrier-free NPs that aim to enhance PDT efficacy. Meanwhile, we discuss the future challenges and potential opportunities associated with these NPs to provide new enlightenment, spur innovative ideas, and facilitate PDT-mediated clinical transformation.


Assuntos
Produtos Biológicos , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Animais , Neoplasias/tratamento farmacológico , Nanopartículas/química , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/administração & dosagem , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA