Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Sensors (Basel) ; 24(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275753

RESUMO

INTRODUCTION: The disco-vertebral junction (DVJ) of the lumbar spine contains thin structures with short T2 values, including the cartilaginous endplate (CEP) sandwiched between the bony vertebral endplate (VEP) and the nucleus pulposus (NP). We previously demonstrated that ultrashort-echo-time (UTE) MRI, compared to conventional MRI, is able to depict the tissues at the DVJ with improved contrast. In this study, we sought to further optimize UTE MRI by characterizing the contrast-to-noise ratio (CNR) of these tissues when either single echo or echo subtraction images are used and with varying echo times (TEs). METHODS: In four cadaveric lumbar spines, we acquired 3D Cones (a UTE sequence) images at varying TEs from 0.032 ms to 16 ms. Additionally, spin echo T1- and T2-weighted images were acquired. The CNRs of CEP-NP and CEP-VEP were measured in all source images and 3D Cones echo subtraction images. RESULTS: In the spin echo images, it was challenging to distinguish the CEP from the VEP, as both had low signal intensity. However, the 3D Cones source images at the shortest TE of 0.032 ms provided an excellent contrast between the CEP and the VEP. As the TE increased, the contrast decreased in the source images. In contrast, the 3D Cones echo subtraction images showed increasing CNR values as the second TE increased, reaching statistical significance when the second TE was above 10 ms (p < 0.05). CONCLUSIONS: Our study highlights the feasibility of incorporating UTE MRI for the evaluation of the DVJ and its advantages over conventional spin echo sequences for improving the contrast between the CEP and adjacent tissues. Additionally, modulation of the contrast for the target tissues can be achieved using either source images or subtraction images, as well as by varying the echo times.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Vértebras Lombares/diagnóstico por imagem , Disco Intervertebral/diagnóstico por imagem , Razão Sinal-Ruído , Imageamento Tridimensional/métodos , Núcleo Pulposo/diagnóstico por imagem
2.
Cell Biochem Funct ; 42(7): e4118, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39267363

RESUMO

Low back pain significantly impacts individuals' quality of life, with intervertebral disc degeneration (IDD) being a primary contributor to this condition. Currently, IDD treatment primarily focuses on symptom management and does not achieve a definitive cure. The cartilage endplate (CEP), a crucial nutrient-supplying tissue of the intervertebral disc, plays a pivotal role in disc degeneration. This review examines the mechanisms underlying CEP degeneration, summarizing recent advancements in understanding the structure and function of CEP, the involvement of various signaling pathways, and the roles of cartilage endplate stem cells (CESCs) and exosomes (Exos) in this process. The aim of this review is to provide a comprehensive reference for future research on CEP. Despite progress in understanding the role of CEP in IDD, the mechanisms underlying CEP degeneration remain incompletely elucidated. Future research poses significant challenges, necessitating further investigations to elucidate the complexities of CEP.


Assuntos
Cartilagem , Degeneração do Disco Intervertebral , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Humanos , Cartilagem/metabolismo , Cartilagem/patologia , Animais , Disco Intervertebral/patologia , Disco Intervertebral/metabolismo , Exossomos/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/patologia , Transdução de Sinais
3.
Heliyon ; 10(18): e37524, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309961

RESUMO

Background and objective: The intrinsic link between the compositional and structural attributes and the biomechanical functionality is evident in intervertebral discs. However, it remains unclear from a biomechanical perspective whether cartilage endplate (CEP) degeneration exacerbates intervertebral disc degeneration. Methods: This study developed and quantitatively validated four biphasic swelling-based finite element models. We then applied four quasi-static tests and simulated daily loading scenarios to examine the effects of CEP degradation. Results: Under free-swelling conditions, short-term responses were prevalent, with CEP performance changes not significantly impacting response proportionality. The creep test results showed the more than 50 % of the strain was attributed to long-term responses. Stress-relaxation testing indicated that all responses increased with disc degeneration, yet CEP degeneration's impact was minimal. Daily load analyses revealed that disc degeneration significantly reduces nucleus pulposus pressure and disc height, whereas CEP degeneration marginally increases nucleus pressure and slightly decreases disc height. Conclusions: Glycosaminoglycan content and CEP permeability are critical to the fluid-dependent viscoelastic response of intervertebral discs. Our findings suggest that CEP contributes to disc degeneration under daily loading conditions.

4.
Zhongguo Zhen Jiu ; 44(9): 1046-53, 2024 Sep 12.
Artigo em Chinês | MEDLINE | ID: mdl-39318296

RESUMO

OBJECTIVE: To observe the effects of electroacupuncture (EA) at "Jiaji" (EX-B 2) on extracellular matrix (ECM) of chondrocytes and inflammatory reaction in rabbits with Modic changes (MC) of cartilage endplate, and to explore the mechanism of EA in treating MC of endplate cartilage. METHODS: Eighteen male New Zealand white rabbits were randomly divided into a sham operation group, a model group and an EA group, 6 rabbits in each group. Based on the autoimmune theory, MC model was established by embedding autogenous nucleus pulposus in the rabbits of the model group and the EA group, based on autoimmunity. After successful modeling, EA was applied at bilateral "Jiaji" (EX-B 2) of L5 and L6 in the EA group, with disperse-dense wave, 2 Hz/15 Hz in frequency and 1 mA in current intensity, 20 min a time, once a day, 1-day interval was taken after continuous 6-day intervention, for 4 weeks totally. Before and after modeling, as well as before and after intervention, the comprehensive response score was observed. After modeling and intervention, magnetic resonance imaging (MRI) was used to observe the signal intensity of intervertebral disc and cartilage endplate. After intervention, the morphology of chondrocytes of cartilage endplate was observed by HE staining; the positive expression of a disintegrin and metalloproteinase with thrombospondin motif-5 (ADAMTS5) and Aggrecan in the cartilage endplate was detected by immunohistochemistry; the levels of inflammatory factors i.e. interleukin-1ß (1L-1ß) and tumor necrosis factor-α (TNF-α) in the cartilage endplate were detected by ELISA; the protein expression of ADAMTS5, Aggrecan, matrix metalloproteinase-13 (MMP-13), IL-1ß and TNF-α in the cartilage endplate was detected by Western blot. RESULTS: Compared with the sham operation group, in the model group, the comprehensive response score was decreased (P<0.01); L5/L6 intervertebral disc and the cancellous bones of endplate vertebral body showed low signal and unclear boundary; the chondrocytes of the cartilage endplate increased significantly, the cells were enlarged and hypertrophic, and the nuclei were wrinkled and clustered; the positive expression of ADAMTS5 as well as the levels of IL-1ß and TNF-α were increased (P<0.01), while the positive expression of Aggrecan was decreased (P<0.01) in the cartilage endplate; the protein expression of ADAMTS5, MMP-13, IL-1ß and TNF-α was increased (P<0.01), while that of Aggrecan was decreased (P<0.01) in the cartilage endplate. Compared with the model group, in the EA group, the comprehensive response score was increased (P<0.01); the signal of L5/L6 intervertebral disc and the cancellous bones of endplate vertebral body was enhanced; the chondrocytes of the cartilage endplate were reduced, the nuclei were slightly crumpled and scattered; the positive expression of ADAMTS5 as well as the levels of IL-1ß and TNF-α were decreased (P<0.05, P<0.01), while the positive expression of Aggrecan was increased (P<0.01) in the cartilage endplate; the protein expression of ADAMTS5, MMP-13, IL-1ß and TNF-α was decreased (P<0.05, P<0.01), while that of Aggrecan was increased (P<0.05) in the cartilage endplate. CONCLUSION: EA at "Jiaji" (EX-B 2) can delay the MC of cartilage endplate. The mechanism may be related to inhibiting the degradation of ECM of chondrocytes and the secretion of inflammatory factors, and repairing the degeneration of endplate cartilage.


Assuntos
Pontos de Acupuntura , Condrócitos , Eletroacupuntura , Matriz Extracelular , Animais , Coelhos , Masculino , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Cartilagem/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Inflamação/terapia , Inflamação/metabolismo , Agrecanas/metabolismo , Agrecanas/genética , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/metabolismo
5.
Sci Rep ; 14(1): 21414, 2024 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271714

RESUMO

Low back pain (LBP) is largely attributed to intervertebral disc degeneration (IVDD), of which the endplate changes are an important component. However, the alterations in cell fate and properties within the endplates during degeneration remain unknown. Here, we firstly performed the single-cell RNA-sequencing analysis (scRNA-seq) of the cells focusing on degenerative human endplates. By unsupervised clustering of the 8,534 single-cell based on the gene expression, we identified nine distinct cell types. We employed Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, and the single-cell regulatory network inference and clustering (SCENIC) to determine the enriched pathways and transcriptional activities across seven chondrocyte subpopulations. Furthermore, two cell fates of chondrocyte differentiation were found by trajectory analysis, one was enriched in inflammation-related genes, and the other was related to extracellular matrix (ECM). Additionally, the intercellular interactions of macrophages (MA) and chondrocytes, T cells/natural killer cells (T/NK) and chondrocytes were examined by ligand-receptor pairs analysis, showing the important regulative function of FN1 from MA and CD74 from T/NK during endplate degeneration. Overall, our findings provide novel perspectives on the endplate degeneration at the single-cell level and a whole-transcriptome size.


Assuntos
Diferenciação Celular , Condrócitos , Degeneração do Disco Intervertebral , Análise de Sequência de RNA , Análise de Célula Única , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Análise de Célula Única/métodos , Condrócitos/metabolismo , Condrócitos/patologia , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Feminino , Masculino , Redes Reguladoras de Genes , Pessoa de Meia-Idade , Macrófagos/metabolismo , Adulto , Disco Intervertebral/patologia , Disco Intervertebral/metabolismo
6.
Cells ; 13(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39272974

RESUMO

INTRODUCTION: The vertebral cartilage endplate (CEP), crucial for intervertebral disc health, is prone to degeneration linked to chronic low back pain, disc degeneration, and Modic changes (MC). While it is known that disc cells express toll-like receptors (TLRs) that recognize pathogen- and damage-associated molecular patterns (PAMPs and DAMPs), it is unclear if CEP cells (CEPCs) share this trait. The CEP has a higher cell density than the disc, making CEPCs an important contributor. This study aimed to identify TLRs on CEPCs and their role in pro-inflammatory and catabolic gene expression. METHODS: Gene expression of TLR1-10 was measured in human CEPs and expanded CEPCs using quantitative polymerase chain reaction. Additionally, surface TLR expression was measured in CEPs grouped into non-MC and MC. CEPCs were stimulated with tumor necrosis factor alpha, interleukin 1 beta, small-molecule TLR agonists, or the 30 kDa N-terminal fibronectin fragment. TLR2 signaling was inhibited with TL2-C29, and TLR2 protein expression was measured with flow cytometry. RESULTS: Ex vivo analysis found all 10 TLRs expressed, while cultured CEPCs lost TLR8 and TLR9 expression. TLR2 expression was significantly increased in MC1 CEPCs, and its expression increased significantly after pro-inflammatory stimulation. Stimulation of the TLR2/6 heterodimer upregulated TLR2 protein expression. The TLR2/1 and TLR2/6 ligands upregulated pro-inflammatory genes and matrix metalloproteases (MMP1, MMP3, and MMP13), and TLR2 inhibition inhibited their upregulation. Endplate resorptive capacity of TLR2 activation was confirmed in a CEP explant model. CONCLUSIONS: The expression of TLR1-10 in CEPCs suggests that the CEP is susceptible to PAMP and DAMP stimulation. Enhanced TLR2 expression in MC1, and generally in CEPCs under inflammatory conditions, has pro-inflammatory and pro-catabolic effects, suggesting a potential role in disc degeneration and MC.


Assuntos
Receptor 2 Toll-Like , Receptores Toll-Like , Humanos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Cartilagem/metabolismo , Cartilagem/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Inflamação/patologia , Inflamação/genética , Inflamação/metabolismo , Regulação da Expressão Gênica , Adulto , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Idoso , Transdução de Sinais
7.
Int Immunopharmacol ; 140: 112801, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39121608

RESUMO

AIM: The degradation of the cartilage endplate (CEP) plays a critical role in the initiation and progression of intervertebral disc degeneration (IVDD), a disease closely associated with inflammation and oxidative stress. Naringin (NGN), a flavonoid compound derived from citrus fruits, has been shown to exhibit significant anti-inflammatory and antioxidant properties. This suggests a promising avenue for NGN's application in IVDD therapy. This study aims to elucidate the therapeutic effects and underlying mechanisms of NGN on CEP degeneration, contributing to the formulation of evidence-based treatment strategies for IVDD. METHODS: In vivo, we developed an intervertebral disc degeneration (IVDD) model in mice by excising the bilateral facet joints and surrounding ligaments, and evaluated the effects of naringin using HE staining and Micro-CT analysis. In vitro, endplate chondrocytes were isolated and subjected to TBHP to replicate the IVDD pathological condition. The protective effects of NGN on these cells were confirmed through immunofluorescence, Western Blot, and flow cytometry. RESULTS: In vivo, NGN effectively mitigated IVDD progression and CEP calcification in mice. In vitro, NGN enhanced mitophagy and suppressed NLRP3 inflammasome activation through the SIRT3/FOXO3a/Parkin pathway. Furthermore, NGN safeguarded chondrocytes against apoptosis and calcification triggered by oxidative stress, in addition to mitigating the degradation of the extracellular matrix. However, silencing SIRT3 negated NGN's protective influence on chondrocytes. CONCLUSION: Our study demonstrated that NGN effectively shields chondrocytes from apoptosis and NLRP3 inflammasome activation by facilitating SIRT3-mediated mitophagy. These insights could pave the way for innovative approaches in the prevention and management of IVDD.


Assuntos
Apoptose , Condrócitos , Flavanonas , Proteína Forkhead Box O3 , Inflamassomos , Degeneração do Disco Intervertebral , Camundongos Endogâmicos C57BL , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sirtuína 3 , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Mitofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Inflamassomos/metabolismo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/patologia , Sirtuína 3/metabolismo , Camundongos , Proteína Forkhead Box O3/metabolismo , Masculino , Modelos Animais de Doenças , Ubiquitina-Proteína Ligases/metabolismo , Células Cultivadas , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
8.
World Neurosurg ; 189: 228-247, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901485

RESUMO

Full-endoscopic lumbar interbody fusion (FELIF) is a critical yet challenging procedure. However, extensive analyses of discectomy and cartilage endplate preparation techniques are limited. This can be attributed to the lack of universal protocols owing to diverse surgical practices and equipment preferences. Therefore, this narrative review presents a comprehensive overview of discectomy and cartilage endplate preparation techniques in FELIF. A literature search of the PubMed, Embase, and Google Scholar databases in December 2023 retrieved 490 studies, of which 53 met the predefined inclusion criteria, and 1373 patients were included in the analyses. Spinal endoscopic disc and cartilage endplate removal can be categorized into 2 main types: removal under direct endoscopic visualization and removal under radiographic guidance with the protection of a working sheath following the endoscope's removal. Removal under direct visualization ensures the safety and precision of the procedure. Radiographic guidance can enhance the efficiency of the removal process. Specially designed instruments can be utilized through the narrow working channels of spinal endoscopes for the scraping surgery. Moreover, many traditional spinal endoscopic instruments, through specific techniques and manipulations, can also aid in cartilage removal. The approaches and techniques vary significantly among physicians, but overall, these instruments and techniques aim to achieve a safe and efficient disc-scraping outcome. Thus, this review may offer a comprehensive guidance to surgeons in selecting the most efficient practices for FELIF. Uniform procedural protocols are needed to ensure broader adoption and standardized practice.


Assuntos
Disco Intervertebral , Vértebras Lombares , Fusão Vertebral , Humanos , Fusão Vertebral/métodos , Fusão Vertebral/instrumentação , Vértebras Lombares/cirurgia , Disco Intervertebral/cirurgia , Disco Intervertebral/diagnóstico por imagem , Discotomia/métodos , Instrumentos Cirúrgicos , Cartilagem , Endoscopia/métodos , Neuroendoscopia/métodos , Neuroendoscopia/instrumentação
9.
J Biomech ; 169: 112131, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739987

RESUMO

Cartilage endplates (CEPs) act as protective mechanical barriers for intervertebral discs (IVDs), yet their heterogeneous structure-function relationships are poorly understood. This study addressed this gap by characterizing and correlating the regional biphasic mechanical properties and biochemical composition of human lumbar CEPs. Samples from central, lateral, anterior, and posterior portions of the disc (n = 8/region) were mechanically tested under confined compression to quantify swelling pressure, equilibrium aggregate modulus, and hydraulic permeability. These properties were correlated with CEP porosity and glycosaminoglycan (s-GAG) content, which were obtained by biochemical assays of the same specimens. Both swelling pressure (142.79 ± 85.89 kPa) and aggregate modulus (1864.10 ± 1240.99 kPa) were found to be regionally dependent (p = 0.0001 and p = 0.0067, respectively) in the CEP and trended lowest in the central location. No significant regional dependence was observed for CEP permeability (1.35 ± 0.97 * 10-16 m4/Ns). Porosity measurements correlated significantly with swelling pressure (r = -0.40, p = 0.0227), aggregate modulus (r = -0.49, p = 0.0046), and permeability (r = 0.36, p = 0.0421), and appeared to be the primary indicator of CEP biphasic mechanical properties. Second harmonic generation microscopy also revealed regional patterns of collagen fiber anchoring, with fibers inserting the CEP perpendicularly in the central region and at off-axial directions in peripheral regions. These results suggest that CEP tissue has regionally dependent mechanical properties which are likely due to the regional variation in porosity and matrix structure. This work advances our understanding of healthy baseline endplate biomechanics and lays a groundwork for further understanding the role of CEPs in IVD degeneration.


Assuntos
Disco Intervertebral , Vértebras Lombares , Humanos , Vértebras Lombares/fisiologia , Disco Intervertebral/fisiologia , Pessoa de Meia-Idade , Masculino , Feminino , Porosidade , Adulto , Idoso , Glicosaminoglicanos/metabolismo , Fenômenos Biomecânicos , Cartilagem/fisiologia , Estresse Mecânico
10.
BMC Musculoskelet Disord ; 25(1): 249, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561725

RESUMO

BACKGROUND: This study investigated the role of Galectin-3 in the degeneration of intervertebral disc cartilage. METHODS: The patients who underwent lumbar spine surgery due to degenerative disc disease were recruited and divided into Modic I, Modic II, and Modic III; groups. HE staining was used to detect the pathological changes in endplates. The changes of Galectin-3, MMP3, Aggrecan, CCL3, and Col II were detected by immunohistochemistry, RT-PCR, and Western blot. MTT and flow cytometry were used to detect cartilage endplate cell proliferation, cell cycle, and apoptosis. RESULTS: With the progression of degeneration (from Modic I to III), the chondrocytes and density of the cartilage endplate of the intervertebral disc decreased, and the collagen arrangement of the cartilage endplate of the intervertebral disc was broken and calcified. Meanwhile, the expressions of Aggrecan, Col II, Galectin-3, Aggrecan, and CCL3 gradually decreased. After treatment with Galectin-3 inhibitor GB1107, the proliferation of rat cartilage end plate cells was significantly reduced (P < 0.05). GB1107 (25 µmol/L) also significantly promoted the apoptosis of cartilage endplate cells (P < 0.05). Moreover, the percentage of cartilage endplate cells in the G1 phase was significantly higher, while that in the G2 and S phases was significantly lower (P < 0.05). Additionally, the mRNA and protein expression levels of MMP3, CCL3, and Aggrecan in rat cartilage end plate cells were lower than those in the control group. CONCLUSIONS: Galectin-3 decreases with the progression of the cartilage endplate degeneration of the intervertebral disc. Galectin-3 may affect intervertebral disc degeneration by regulating the degradation of the extracellular matrix.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Humanos , Ratos , Agrecanas/genética , Agrecanas/metabolismo , Cartilagem/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Metaloproteinase 3 da Matriz
11.
Aging (Albany NY) ; 16(2): 1145-1160, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38284902

RESUMO

Lumbar disc degeneration (LDD) is a prevalent clinical spinal disease characterized by the calcification and degeneration of the cartilage endplate (CEP), which significantly reduces nutrient supply to the intervertebral disc. Traditional Chinese medicine offers a conservative and effective approach for treating LDD. We aimed to investigate the molecular mechanisms underlying the therapeutic effects of Sesamin in LDD treatment. Transcriptome sequencing was used to analyze the effect of Sesamin on LPS-induced ATDC5. We explored the role of BECN2, a target gene of Sesamin, in attenuating LPS-induced degeneration of ATDC5 cells. Our results revealed the identification of 117 differentially expressed genes (DEGs), with 54 up-regulated and 63 down-regulated genes. Notably, Sesamin significantly increased the expression of BECN2 in LPS-induced ATDC5 cell degeneration. Overexpressed BECN2 enhanced cell viability and inhibited cell apoptosis in LPS-induced ATDC5 cells, while BECN2 knockdown reduced cell viability and increased apoptosis. Furthermore, BECN2 played a crucial role in attenuating chondrocyte degeneration by modulating autophagy and inflammation. Specifically, BECN2 suppressed autophagy by reducing the expression of ATG14, VPS34, and GASP1, and alleviated the inflammatory response by decreasing the expression of inflammasome proteins NLRP3, NLRC4, NLRP1, and AIM2. In vivo experiments further supported the beneficial effects of Sesamin in mitigating LDD. This study provides novel insights into the potential molecular mechanism of Sesamin in treating LDD, highlighting its ability to mediate autophagy and inflammation inhibition via targeting the BECN2. This study provides a new therapeutic strategy for the treatment of LDD, as well as a potential molecular target for LDD.


Assuntos
Dioxóis , Degeneração do Disco Intervertebral , Peptídeos e Proteínas de Sinalização Intracelular , Lignanas , Autofagia , Cartilagem/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/farmacologia , Animais , Camundongos
12.
J Orthop Surg Res ; 19(1): 80, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243334

RESUMO

Low back pain (LBP) is a common orthopedic disease over the world. Lumbar intervertebral disc degeneration (IDD) is regarded as an important cause of LBP. Shensuitongzhi formula (SSTZF) is a drug used in clinical treatment for orthopedic diseases. It has been found that SSTZF can have a good treatment for IDD. But the exact mechanism has not been clarified. The results showed that SSTZF protects against LSI-induced degeneration of cartilage endplates and intervertebral discs. Meanwhile, SSTZF treatment dramatically reduces the expression of inflammatory factor as well as the expression of catabolism protein and upregulates the expression of anabolism protein in LSI-induced mice. In addition, SSTZF delayed the progression of LSI-induced IDD via downregulation the level of NF-κB signaling key gene RELA and phosphorylation of key protein P65 in endplate chondrocytes. Our study has illustrated the treatment as well as the latent mechanism of SSTZF in IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Camundongos , Animais , NF-kappa B/metabolismo , Degeneração do Disco Intervertebral/genética , Regulação para Baixo , Transdução de Sinais , Disco Intervertebral/metabolismo
13.
Arthritis Res Ther ; 26(1): 12, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173036

RESUMO

BACKGROUND: Low back pain is a leading cause of disability worldwide and is frequently attributed to intervertebral disc (IVD) degeneration. Though the contributions of the adjacent cartilage endplates (CEP) to IVD degeneration are well documented, the phenotype and functions of the resident CEP cells are critically understudied. To better characterize CEP cell phenotype and possible mechanisms of CEP degeneration, bulk and single-cell RNA sequencing of non-degenerated and degenerated CEP cells were performed. METHODS: Human lumbar CEP cells from degenerated (Thompson grade ≥ 4) and non-degenerated (Thompson grade ≤ 2) discs were expanded for bulk (N=4 non-degenerated, N=4 degenerated) and single-cell (N=1 non-degenerated, N=1 degenerated) RNA sequencing. Genes identified from bulk RNA sequencing were categorized by function and their expression in non-degenerated and degenerated CEP cells were compared. A PubMed literature review was also performed to determine which genes were previously identified and studied in the CEP, IVD, and other cartilaginous tissues. For single-cell RNA sequencing, different cell clusters were resolved using unsupervised clustering and functional annotation. Differential gene expression analysis and Gene Ontology, respectively, were used to compare gene expression and functional enrichment between cell clusters, as well as between non-degenerated and degenerated CEP samples. RESULTS: Bulk RNA sequencing revealed 38 genes were significantly upregulated and 15 genes were significantly downregulated in degenerated CEP cells relative to non-degenerated cells (|fold change| ≥ 1.5). Of these, only 2 genes were previously studied in CEP cells, and 31 were previously studied in the IVD and other cartilaginous tissues. Single-cell RNA sequencing revealed 11 unique cell clusters, including multiple chondrocyte and progenitor subpopulations with distinct gene expression and functional profiles. Analysis of genes in the bulk RNA sequencing dataset showed that progenitor cell clusters from both samples were enriched in "non-degenerated" genes but not "degenerated" genes. For both bulk- and single-cell analyses, gene expression and pathway enrichment analyses highlighted several pathways that may regulate CEP degeneration, including transcriptional regulation, translational regulation, intracellular transport, and mitochondrial dysfunction. CONCLUSIONS: This thorough analysis using RNA sequencing methods highlighted numerous differences between non-degenerated and degenerated CEP cells, the phenotypic heterogeneity of CEP cells, and several pathways of interest that may be relevant in CEP degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Disco Intervertebral/metabolismo , Cartilagem/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Condrócitos/metabolismo , Células-Tronco/metabolismo
14.
JOR Spine ; 7(1): e1297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38222801

RESUMO

Background: Intervertebral disc degeneration is associated with low back pain, which is a leading cause of disability. While the precise causes of disc degeneration are unknown, inadequate nutrient and metabolite transport through the cartilage endplate (CEP) may be one important factor. Prior work shows that CEP transport properties depend on the porosity of the CEP matrix, but little is known about the role of CEP characteristics that could influence transport properties independently from porosity. Here, we show that CEP transport properties depend on the extent of non-enzymatic glycation of the CEP matrix. Methods and Results: Using in vitro ribosylation to induce non-enzymatic glycation and promote the formation of advanced glycation end products, we found that ribosylation reduced glucose partition coefficients in human cadaveric lumbar CEP tissues by 10.7%, on average, compared with donor- and site-matched CEP tissues that did not undergo ribosylation (p = 0.04). These reductions in glucose uptake were observed in the absence of differences in CEP porosity (p = 0.89) or in the amounts of sulfated glycosaminoglycans (sGAGs, p = 0.47) or collagen (p = 0.61). To investigate whether ribosylation altered electrostatic interactions between fixed charges on the sGAG molecules and the mobile free ions, we measured the charge density in the CEP matrix using equilibrium partitioning of a cationic contrast agent using micro-computed tomography. After contrast enhancement, mean X-ray attenuation was 11.9% lower in the CEP tissues that had undergone ribosylation (p = 0.02), implying the CEP matrix was less negatively charged. Conclusions: Taken together, these findings indicate that non-enzymatic glycation negatively impacts glucose transport in the CEP independent of matrix porosity or sGAG content and that the effects may be mediated by alterations to matrix charge density.

15.
Orthop Surg ; 16(1): 167-182, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014468

RESUMO

OBJECTIVE: Mechanisms involved in developing intervertebral disc degeneration (IDD) are poorly understood, thus making developing effective therapies difficult. This study aimed to suggest a possible molecular mechanism, based on transcriptome sequencing-identified transforming growth factor (TGF-ß), underlying the effects on bone homeostasis in IDD. METHODS: A mouse model for IDD was established. Transcriptome sequencing of nucleus pulposus tissue from mice (n = 3) identified differentially expressed mRNAs and key genes impacting bone homeostasis. A protein-protein interaction network pinpointed core genes. GO and KEGG analysis revealed gene functions. Expression levels of TGF-ß1, tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CTSK) were measured. Micro-CT evaluated vertebral structures and vascular imaging. Western Blot measured expression levels of Vegf, Opn, MMP3, and MMP13. Safranin O-Fast Green and TRAP staining were performed on intervertebral discs and endplates. RESULTS: Transcriptomic analysis found 1790 differentially expressed mRNAs in IDD mice. Twenty-eight genes related to bone homeostasis in IDD were identified. TGF-ß1 was confirmed as the core gene. GO and KEGG showed TGF-ß1 regulates osteoclast markers like CTSK and TRAP through pathways including NF-κB and MAPK. Experimental validation revealed lower TGF-ß1 expression in IDD mice than controls, and increased TRAP and CTSK expression. Micro-CT showed decreased bone mass and intervertebral disc space in IDD mice. Vascular imaging showed increased vascular volume in IDD cartilaginous endplates. Western blot displayed increased VEGF and OPN levels, but decreased MMP3 and MMP13 in IDD mice. Safranin O-fast green staining revealed severe IDD degeneration. However, TGF-ß1 injection improved bone parameters in IDD mice. In vitro experiments confirmed TGF-ß1 inhibits bone marrow macrophages differentiation into osteoclasts. CONCLUSION: From our data, we conclude that TGF-ß1 repressed osteoclast differentiation and aberrant bone-associated angiogenesis in cartilage endplates (EPs) to alleviate IDD, which may be instrumental for the therapeutic targeting of IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Osteoclastos , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Angiogênese , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Metaloproteinase 13 da Matriz , Metaloproteinase 3 da Matriz , Osteoclastos/metabolismo , Corantes de Rosanilina , Análise de Sequência de RNA , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
J Inflamm Res ; 16: 5791-5806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076337

RESUMO

Purpose: Intervertebral disc degeneration (IDD) is considered the predominant cause of low back pain (LBP) and accounts for global disability and a substantial socioeconomic burden. Given the unsatisfactory outcomes of current treatment strategies, cartilage endplate-derived stem cells (CESCs) are increasingly used in intervertebral disc regeneration. However, comprehensive analyses on CESCs remain rare. Herein, we examined the biological functions and applications of CESCs in IDD. Methods: PubMed, Embase, and Cochrane Library databases were searched to identify studies focused on CESCs. Relevant information from included studies was extracted. Descriptive statistics were performed. Correlation analysis was conducted to determine the relationship among Web of Science (WoS) citations, Dimensions, and Altmetric Attention Score (AAS). Results: Twenty-six studies were included in this study. Most studies (n=20) isolated CESCs from humans, followed by rats (n=5) and rabbits (n=1). Twenty studies were performed in vitro, and the remaining six were implemented both in vivo and in vitro. The findings of this study provide insight into the biological properties of CESCs and clarify their potential application for intervertebral disc regeneration. There was a very high correlation between WoS and Dimensions citation count (p<0.001, r=0.988). Conclusion: This study, for the first time, elaborates biological features of CESCs and analyzes their potential applications in regenerating intervertebral discs. CESCs may be promising candidates for protecting the intervertebral disc from degeneration and contributing to intervertebral disc regeneration.

17.
J Inflamm Res ; 16: 5899-5913, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084106

RESUMO

Background: Intervertebral disc degeneration (IDD) is a prevalent degenerative disease and often recognized as the primary cause of lower back pain (LBP). Aucubin (Au) is a natural compound with anti-inflammatory properties in various diseases. The present study aimed to confirm the therapeutic effect of Au on IDD and explore its potential mechanism in vivo and in vitro. Methods: The process of IDD was simulated using the lumbar spine instability (LSI) model. In vivo, the therapeutic effect of Au on LSI-induced mice was evaluated by micro-CT and histomorphometry. Additionally, immunohistochemistry was applied to detect the cartilage metabolism and inflammasome activation in endplate. In vitro, the cytotoxicity of Au on ATDC5 cells was detected by Cell Counting Kit-8 (CCK-8), and the biological effects of Au were evaluated by Quantitative Real-time PCR (qRT-PCR) and Western blotting. Results: Micro-CT analysis showed that Au administration significantly alleviated LSI-induced disc volume narrowing and endplate cartilage degeneration, which was further supported by Alcian Blue Hematoxylin/Orange G (ABH/OG) staining. Immunohistochemistry results verified that Au could increase the expression of Col2α1 and Aggrecan, reduce the expression of Mmp-13, and attenuate the degradation of the endplate extracellular matrix (ECM). Mechanistically, we found that Au treatment, both in vivo and in vitro, significantly inhibited NF-κB-NLRP3 inflammasome activation in chondrocytes as determined by the decreased expression of p-P65, NLRP3, and Caspase-1. Discussion: Taken together, our findings have demonstrated for the first time that Au treatment ameliorated the degeneration of cartilage endplates in IDD may by inhibiting NF-κB-NLRP3 inflammasome activation in chondrocytes and provided a potential candidate for the treatment of IDD.

18.
J Inflamm Res ; 16: 5235-5248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026238

RESUMO

Purpose: Intervertebral disc (IVD) degeneration, associated with aging, may cause low back pain and disability, with obesity as a significant risk factor. In a prior study, we found a positive correlation between IVD degeneration and levels of matrix metalloproteinase-1 (MMP-1) and leptin. Yet, the interaction between MMP-1 and leptin in IVD degeneration is unclear. Our research seeks to explore leptin's influence on MMP-1 expression and the underlying mechanisms in human intervertebral disc cartilage endplate-derived stem cells, specifically SV40 cells. Methods: The mRNA and protein expression in leptin-stimulated SV40 cells were assessed using RT-real-time PCR and Western blotting or ELISA, respectively. We examined leptin-mediated RhoA activation through a GTP-bound RhoA pull-down assay. Furthermore, the phosphorylation levels of mitogen-activated protein kinases and AKT in leptin-stimulated SV40 cells were analyzed using Western blotting. The activation of NF-κB by leptin was investigated by assessing phosphorylation of IKKα/ß, IκBα, and NF-κB p65, along with the nuclear translocation of NF-κB p65. To understand the underlying mechanism behind leptin-mediated MMP-1 expression, we employed specific inhibitors. Results: Leptin triggered the mRNA and protein expression of MMP-1 in SV40 cells. In-depth mechanistic investigations uncovered that leptin heightened RhoA activity, promoted ERK1/2 phosphorylation, and increased NF-κB activity. However, leptin did not induce phosphorylation of JNK1/2, p38, or AKT. When we inhibited RhoA, ERK1/2, and NF-κB, it resulted in a decrease in MMP-1 expression. Conversely, inhibition of reactive oxygen species and NADPH oxidase did not yield the same outcome. Additionally, inhibiting RhoA or ERK1/2 led to a reduction in leptin-induced NF-κB activation. Moreover, inhibiting RhoA also decreased leptin-mediated ERK1/2 phosphorylation. Conclusion: These results indicated that leptin induced MMP-1 expression in SV40 cells through the RhoA/ERK1/2/NF-κB axis. This study provided the pathogenic role of leptin and suggested the potential therapeutic target for IVD degeneration.

19.
J Inflamm Res ; 16: 3455-3468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600226

RESUMO

Background: Intervertebral disc degeneration (IDD) is a major cause of lower back pain (LBP), in which inflammatory is frequently involved. Amygdalin (AMD) is a naturally occurring compound that exerts anti-fibrotic, anti-inflammatory, analgesic, and immunomodulatory effects in various diseases. The purpose of this study was to investigate the therapeutic effects and molecular mechanisms of AMD on Lumbar spine instability (LSI)-induced IDD in mice. Methods: In this study, we first explored the effects of AMD in vivo, and then further explored the mechanism of its effects both in vivo and in vitro. Ten-week-old male C57BL/6J mice were administrated with AMD. At 10 weeks after LSI, spinal were collected for tissue analyses, including histology, micro-CT, and immunohistochemistry for Col2, Mmp-13, TNF-α, and p-P65. Additionally, we also evaluated the mRNA and protein expression level of p-P65 and p-IKBα after being treated with AMD in vitro. Results: Histological staining, micro-CT and immunohistochemical analysis showed that AMD treatment significantly inhibited the expression of TNF-α and Mmp-13, increased the expression of Col2 as well as attenuated the calcification of cartilage endplates, eventually to delayed the progression of IDD. Meanwhile, in vivo and in vitro fluorescence imaging revealed that AMD markedly inhibited the AMD significantly inhibited the LSI-induced increase in TNF-α expression and P65and IKBα phosphorylation. Discussion: Our findings suggest that AMD partly inhibits the activation of NF-κB signaling pathway to reduce the release of inflammatory mediators and delay the degeneration of cartilage endplate in IDD model mice. Therefore, AMD may be a potential candidate for the treatment of IDD.

20.
Exp Ther Med ; 26(1): 312, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37273754

RESUMO

Cartilage endplate (CEP) degeneration is considered one of the major causes of intervertebral disc degeneration (IDD), which causes non-specific neck and lower back pain. In addition, several non-coding RNAs (ncRNAs), including long ncRNAs, microRNAs and circular RNAs have been shown to be involved in the regulation of various diseases. However, the particular role of ncRNAs in CEP remains unclear. Identifying these ncRNAs and their interactions may prove to be is useful for the understanding of CEP health and disease. These RNA molecules regulate signaling pathways and biological processes that are critical for a healthy CEP. When dysregulated, they can contribute to the development disease. Herein, studies related to ncRNAs interactions and regulatory functions in CEP are reviewed. In addition, a summary of the current knowledge regarding the deregulation of ncRNAs in IDD in relation to their actions on CEP cell functions, including cell proliferation, apoptosis and extracellular matrix synthesis/degradation is presented. The present review provides novel insight into the pathogenesis of IDD and may shed light on future therapeutic approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA