Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(23): 6872-6880, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38683656

RESUMO

The efficient cytosolic delivery of the CRISPR-Cas9 machinery remains a challenge for genome editing. Herein, we performed ligand screening and identified a guanidinobenzol-rich polymer to overcome the cascade delivery barriers of CRISPR-Cas9 ribonucleoproteins (RNPs) for genome editing. RNPs were stably loaded into the polymeric nanoparticles (PGBA NPs) by their inherent affinity. The polymer facilitated rapid endosomal escape of RNPs via a dynamic multiple-step cascade process. Importantly, the incorporation of fluorescence in the polymer helps to identify the correlation between cellular uptake and editing efficiency, increasing the efficiency up to 70% from the initial 30% for the enrichment of edited cells. The PGBA NPs efficiently deliver RNPs for in vivo gene editing via both local and systemic injections and dramatically reduce PCSK9 level. These results indicate that PGBA NPs enable the cascade delivery of RNPs for genome editing, showing great promise in broadening the therapeutic potential of the CRISPR-Cas9 technique.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Nanopartículas , Polímeros , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Humanos , Polímeros/química , Nanopartículas/química , Animais , Ribonucleoproteínas/genética , Ribonucleoproteínas/química , Células HEK293 , Camundongos , Guanidinas/química
2.
Expert Opin Drug Deliv ; 21(2): 245-278, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344771

RESUMO

INTRODUCTION: Polymer-lipid hybrid nanoparticle (PLN) is an emerging nanoplatform with distinct properties and functionalities from other nanocarrier systems. PLN can be optimized to overcome various levels of drug delivery barriers to achieve desired therapeutic outcomes via rational selection of polymer and lipid combinations based on a thorough understanding of their properties and interactions with therapeutic agents and biological systems. AREAS COVERED: This review provides an overview of PLN including the motive and history of PLN development, types of PLN, preparation methods, attestations of their versatility, and design strategies to circumvent various barriers for increasing drug delivery accuracy and efficiency. It also highlights recent advances in PLN design including: rationale selection of polymer and lipid components to achieve spatiotemporal drug targeting and multi-targeted cascade drug delivery; utilizing the intracellular lipid transport mechanism for active targeting to desired organelles; and harnessing bioreactive lipids and polymers to magnify therapeutic effects. EXPERT OPINION: A thorough understanding of properties of PLN components and their biofate is important for enhancing disease site targeting, deep tumor tissue penetration, cellular uptake, and intracellular trafficking of PLN. For futuristic PLN development, active lipid transport and dual functions of lipids and polymers as both nanocarrier material and pharmacological agents can be further explored.


Assuntos
Nanopartículas , Polímeros , Portadores de Fármacos , Lipídeos , Sistemas de Liberação de Medicamentos
3.
Adv Mater ; 36(9): e2307006, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37924225

RESUMO

The ferroptosis pathway is recognized as an essential strategy for tumor treatment. However, killing tumor cells in deep tumor regions with ferroptosis agents is still challenging because of distinct size requirements for intratumoral accumulation and deep tumor penetration. Herein, intelligent nanocapsules with size-switchable capability that responds to acid/hyperthermia stimulation to achieve deep tumor ferroptosis are developed. These nanocapsules are constructed using poly(lactic-co-glycolic) acid and Pluronic F127 as carrier materials, with Au-Fe2 C Janus nanoparticles serving as photothermal and ferroptosis agents, and sorafenib (SRF) as the ferroptosis enhancer. The PFP@Au-Fe2 C-SRF nanocapsules, designed with an appropriate size, exhibit superior intratumoral accumulation compared to free Au-Fe2 C nanoparticles, as evidenced by photoacoustic and magnetic resonance imaging. These nanocapsules can degrade within the acidic tumor microenvironment when subjected to laser irradiation, releasing free Au-Fe2 C nanoparticles. This enables them to penetrate deep into tumor regions and disrupt intracellular redox balance. Under the guidance of imaging, these PFP@Au-Fe2 C-SRF nanocapsules effectively inhibit tumor growth when exposed to laser irradiation, capitalizing on the synergistic photothermal and ferroptosis effects. This study presents an intelligent formulation based on iron carbide for achieving deep tumor ferroptosis through size-switchable cascade delivery, thereby advancing the comprehension of ferroptosis in the context of tumor theranostics.


Assuntos
Compostos Inorgânicos de Carbono , Ferroptose , Hipertermia Induzida , Compostos de Ferro , Nanocápsulas , Nanopartículas , Neoplasias , Humanos , Linhagem Celular Tumoral , Neoplasias/terapia , Sorafenibe , Hipertermia/terapia , Hipertermia Induzida/métodos , Microambiente Tumoral
4.
Biomaterials ; 223: 119465, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31518842

RESUMO

Drug nanovehicles owning tumor microenvironment responsive and modulating capacities are highly demanding for effective tumor chemotherapy but still lack of exploration. Here, a kind of core-releasable satellite nanovehicles was rational constructed, which is composed of polydopamine (PDA) cores as photothermal agents and the carrier for small satellite nanoparticles (NPs) and drugs, G5Au NPs as the drug-loading satellites for deep tumor drug delivery and as catalase-like agents for relieving tumor hypoxia, doxorubicin (DOX) as the model chemotherapeutic drug loaded by both PDA and G5Au NPs, and polyethylene glycol (PEG) shells to improve biosafety. The developed drug-loaded nanovehicles (denoted as PDA-G5Au-PEG@DOX) can release G5Au satellites and DOX in stimuli-responsive manners. Thorough drug delivery in solid tumor can be realized via transporting DOX to the near-by area of and remote area from blood vessels by PDA and G5Au, respectively. Monitored by photoacoustic imaging and near-infrared fluorescence imaging, these PDA-G5Au-PEG@DOX NPs could accumulate in 4T1 tumor effectively. Under this guidance, significant tumor growth suppression could be achieved by the treatment of PDA-G5Au-PEG@DOX NPs plus laser without detectable side effects during the treatment period. The developed drug-loaded core-satellite nanovehicles with tumor microenvironment responsive/modulating capacities are of great potential in precise tumor treatments.


Assuntos
Antineoplásicos/uso terapêutico , Doxorrubicina/administração & dosagem , Nanomedicina/métodos , Neoplasias/tratamento farmacológico , Hipóxia Tumoral , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Hipertermia Induzida , Indóis/farmacologia , Ligantes , Camundongos , Nanopartículas/uso terapêutico , Transplante de Neoplasias , Oxigênio/metabolismo , Técnicas Fotoacústicas , Fototerapia , Polietilenoglicóis/química , Polímeros/farmacologia , Espectroscopia de Luz Próxima ao Infravermelho , Esferoides Celulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA