Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 792
Filtrar
1.
Sci Total Environ ; 954: 176200, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39284450

RESUMO

While environmental DNA (eDNA) metabarcoding holds promise as a holistic approach to assess vegetation changes and community composition across diverse spatial and temporal scales, systematic investigations of its efficacy compared to conventional field surveys remain scarce in the literature. The present study explores the differences in plant diversity recovered from field surveys and captured with a multi-marker eDNA metabarcoding approach (two nrDNA ITS1 and ITS2, and two cpDNA rbcL and trnL) from river water samples. The eDNA metabarcoding approach retrieved 46 aquatic plants (hydrophytes and helophytes) and 245 terrestrial plants, compared to 24 and 127 species identified from field surveys. On average, eDNA samples collected immediately downstream of the survey sites recovered 43 % and 39 % of the aquatic and terrestrial species observed, respectively. Discrepancies were explained by differences in taxonomic resolution, the stochasticity of the retrieval of rare and elusive species, and the presence of reference sequences. We found a significant positive correlation between spatial and community distances at scales ranging from 2 to 9 km and identified turnover as the driving force of these differences. Metabarcoding demonstrated sensitivity to community changes and both approaches converge on a similar community structure. Interestingly, eDNA samples collected immediately upstream of the survey sites exhibited significant species overlap with the downstream samples (c. 100 m apart). Overall, our results demonstrate that within-site species mismatches between the methods are nonnegligible, and they question the use of eDNA for generating complete species lists at scales comparable to our field surveys (< 100-m transects). However, with adequate sampling and a multi-marker metabarcoding approach, eDNA has the potential to approximate catchment gamma diversity with less sampling effort than conventional surveys.

2.
J Environ Manage ; 370: 122617, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326076

RESUMO

The vegetation-runoff relationship remains unclear in karstic regions. The karst landform in southwest China is a focal area where significant changes in vegetation have occurred in the past few decades, which may substantially impact water resources. To date, the effects of these changes on runoff remain uncertain. This study employed statistical analysis, numerical simulation, and scenario analysis to investigate the temporal and spatial patterns of runoff, climate, and vegetation in 20 typical catchments. The study also evaluated the response of runoff to vegetation and climate changes and the underlying factors. The findings revealed precipitation changes dominated changes in runoff in these catchments (mean contribution of 53.03%), whereas the contributions of vegetation and potential evapotranspiration changes were 23.16% and 23.82%, respectively. The study also revealed that the impacts of vegetation changes on runoff were significantly dependent on vegetation and climate factors (R2 = 0.60, P < 0.01). Furthermore, under the same climate change conditions, a higher distribution of natural vegetation (such as forest) in the catchment resulted in a larger decreasing trend in runoff. The results provide guidelines for the prediction of runoff variation in southwest China, and benefits to decision-making on ecological restoration and water resources development.

3.
Heliyon ; 10(17): e36315, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39263136

RESUMO

Soil erosion and sediment buildup are the factors that speed up the decline in capacity and function of reservoirs, agricultural products, and water resources. In order to simulate sediment and runoff and map high sediment-yielding sub-basins in the Gibe Gojeb catchment in southwest Ethiopia, this study used the Soil and Water Assessment Tool (SWAT) model. Using data on sediment and river flow, calibration and validation were carried out. Between 2003 and 2016, the catchment produced an average annual sediment loading of 62.5 tons ha-1 yr-1, with loading fluctuations ranging from 0.2 to 108.4 tons ha-1 yr-1. The acceptable sediment yield threshold value ranges from 12.3 to 108.4 tons ha-1 yr-1 for 56 sub-basins, and from 0.2 to 10 tons ha-1 yr-1 for 5 sub-basins. The most significant sub-basins with very high to extremely severe sediment yields were sub-basins 1 to 30, 32 to 44, 47, 48, 50, 51, and 53 to 61. After thirteen years of operation, the yearly amount of 58,802 tons of sediment transferred from the catchment and deposited into Gibe One reservoir has decreased the capacity by 5.7 %. The accumulation of sediment in a reservoir has an impact on its functionality, power production, and capacity, affecting the safety of dams and the environment. The study's findings enhanced our comprehension of sediment accumulation in reservoirs and furnished us with the necessary information regarding reservoir safety, integrated soil, and water management.

4.
Water Res ; 267: 122438, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39305530

RESUMO

The biogeochemical cycles of nitrogen (N) and sulfur (S) play important roles in sustaining the Earth's ecosystem. However, their potential coupling process and underlying mechanisms in the nature remain unclear. Through joint applications of river water's isotopic compositions, isotope-pairing experiments, and molecular techniques, this study revealed the coupled N-S cycling processes at a catchment scale from both geochemical and biological perspectives. The river water's natural abundance isotopic compositions indicated that sulfide oxidation was an important source (67.0 ± 5.5 % in summer and 72.0 ± 5.5 % in winter) of riverine sulfate (SO42-). In addition, sulfide oxidation and NOx reduction (especially denitrification) were tightly coupled in summer but less significantly so in winter. However, the coupling of sulfide oxidation and dissimilatory nitrate reduction to ammonium (DNRA) could not be overlooked in winter. The 15N pairing experiments quantitatively showed that the high sulfide oxidation rates in summer (4.7 ± 2.3 mol/km2/h) were significantly associated with the denitrification. Metagenomics and qPCR analyses of the soils supported the isotopic interpretations, substantiating the metabolic potential and coexistence of bacterial denitrification, DNRA, and sulfide oxidation, which was more prevalent in summer. This study reveals comprehensive evidence that sulfide oxidation and NOx reduction are tightly coupled at the catchment scale, which provides a new perspective towards a better understanding of N-S cycling.

5.
Sci Total Environ ; 951: 175463, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153608

RESUMO

Hydrometeorological processes are often assumed to be key drivers of plastic transport. However, the predominant focus on these factors overlooks the impact of anthropogenic factors, such as mismanaged plastic waste (MPW) on plastic transport variability. Here, we investigate the roles of both anthropogenic and hydrometeorological factors on plastic pollution in the Odaw catchment, Ghana. Data on macroplastic transport and density were collected at ten locations between December 2021 and December 2022. We tested for differences between the wet and dry seasons and applied a multiple regression analysis to examine the separate and combined impact of hydrometeorological variables (rainfall, discharge, and windspeed) on macroplastic transport. Additionally, we analyzed the spatial correlation in macroplastic transport/density with MPW and population density. Data collection involved visual counting of floating macroplastics at 10 river locations and counting litter at 9 riverbanks and land locations. Rainfall data was sourced from TAHMO (Trans-African Hydrometeorological Observatory), discharge was measured during field campaigns, and windspeed data sourced from a global climate data provider. We used globally modelled MPW estimates to represent anthropogenic factors. Contrary to previous studies, we found no seasonal differences in macroplastic pollution and only weak correlations were observed between the hydrometeorological variables and macroplastic transport. However, a strong correlation was observed between MPW and macroplastic pollution. We hypothesize that, the influence of hydrometeorological factors on macroplastic transport depend on the relative impact of anthropogenic factors. Our research highlights the limited role of hydrometeorology, showing the significant role of mismanaged plastic waste to field monitored macroplastic pollution variability in the catchment. This insight is essential for future research as it highlights the importance of holistically investigating both anthropogenic and hydrometeorological factors in explaining plastic transport and retention dynamics. This insight is essential for developing interventions that effectively address plastic pollution in catchments.

6.
Sci Total Environ ; 951: 175580, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153612

RESUMO

Usage of antibiotics in agriculture has increased dramatically recently, significantly raising the influx of antibiotic resistance genes (ARGs) into river systems through organic manure runoff, seriously threatening water security. However, the dynamics, transmission mechanisms, and potential water security risk of ARGs, as well as their response to land use spatial scale and seasonal variations in agricultural river systems remain unclear. To address these challenges, this work employed metagenomic technique to systematically evaluate the pollution and dissemination of ARGs in overlying water and sediment within a typical agricultural catchment in China. The results demonstrated significant differences between overlying water and sediment ARGs. Overlying water dominated by multidrug ARGs exhibited higher diversity, whereas sediment predominantly containing sulfonamide ARGs had higher abundance. The dynamics of ARGs in overlying water were more responsive to seasonal variations compared to sediment due to greater changes in hydrodynamics and nutrient conditions. The profiles of ARGs in overlying water were largely regulated by microbiota, whereas mobile genetic elements (MGEs) were the main forces driving the dissemination of ARGs in sediment. The variation in dissemination mechanisms led to different resistance risks, with sediment presenting a higher resistance risk than overlying water. Furthermore, Mantel test was applied to discover the impact of land use spatial scale and composition on the transmission of ARGs in river systems. The findings showed that cultivated land within 5 km of the riverbank was the key influencing factor. Cultivated land exacerbated ARGs spread by increasing MGEs abundance and nutrient concentrations, resulting in the abundance of ARGs in high-cultivated sites being twice that in low-cultivated sites, and raising the regional water security risk, with a more pronounced effect in sediment. These findings contribute to a better understanding of ARGs dissemination in agricultural watersheds, providing a basis for implementing effective resistance control measures and ensuring water security.


Assuntos
Agricultura , Resistência Microbiana a Medicamentos , Monitoramento Ambiental , Rios , Rios/microbiologia , China , Resistência Microbiana a Medicamentos/genética , Antibacterianos , Poluentes Químicos da Água/análise
7.
Water Res ; 264: 122108, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39126744

RESUMO

The profound influence of climate change on the hydrological cycle raises concerns about its potential impacts on water quality, particularly in agricultural catchments. Here, we analysed 200 storm events monitored for nitrate and total phosphorus (TP) at sub-hourly intervals from 2016 to 2023 in the Kervidy-Naizin catchment (north-western France). Using Extreme Value theory, we identified storm events with extreme concentrations and compared their hydroclimatic characteristics to those of non-extreme events. We hypothesised that extreme concentration events occurred under extreme hydroclimatic conditions, which are projected to become more frequent in the future. The extreme events identified showed dilution patterns for nitrate, with concentrations decreasing by up to 41 %, and accretion patterns for TP, with concentrations increasing by up to 1400 % compared to non-extreme events. Hydroclimatic conditions during extreme concentration events were characterised by high rainfall intensities and low antecedent discharge, but no particular conditions for mean discharge. During non-extreme events, nitrate concentration-discharge relationships exhibited primarily clockwise hysteresis, whereas TP displayed an equal mix of clockwise and anticlockwise loops. In contrast, extreme events showed more anticlockwise hysteresis for nitrate and weak hysteresis for TP. We interpreted these dynamics and their hydroclimatic controls as the result of infiltration-excess overland flow diluting nitrate-rich groundwater and exporting large amounts of TP during intensive rainfall events following droughts, while groundwater fluctuations in the riparian zone and streambed remobilization control nutrient exports during non-extreme events. Given the increasing frequency and intensity of hydroclimatic extremes, such retrospective analyses can provide valuable insights into future nutrient dynamics in streams draining agricultural catchments.


Assuntos
Agricultura , Secas , Fósforo , Chuva , Fósforo/análise , Nitratos/análise , Nutrientes/análise , França , Mudança Climática , Água Subterrânea/química , Monitoramento Ambiental
8.
Sci Rep ; 14(1): 18456, 2024 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117749

RESUMO

Zooplankton are critical indicators of pressures impacting freshwater ecosystems. We analyzed the response of zooplankton communities across different sub-catchment types-headwaters, natural, urban, urban-agricultural, and agricultural-within the Lyna river-lake system in Northern Poland. Using taxonomic groups and functional traits (body size, feeding strategies), we applied Partial Least Squares Regression (PLS-R) to elucidate the relationships between environmental conditions, land use, and zooplankton metacommunity structure. Two-Way Cluster Analysis (TWCA) identified local subsets with characteristic patterns, while Indicator Species Analysis (ISA) determined area-specific taxa. The natural river zone exhibited significant habitat heterogeneity and feeding niches, whereas urban areas created functional homogenization of zooplankton, dominated by small, broad-diet microphages. Agricultural areas promoted diversity among large filter feeders (Crustacea), active suctors (Rotifera), and amoebae (Protozoa). However, intensified agricultural activities, substantially diminished the zooplankton population, biomass, taxonomic richness, and overall ecosystem functionality. The impact of land cover change is more pronounced at small-scale sub-catchments than at the catchment level as a whole. Therefore, assessing these impacts requires detailed spatial and temporal analysis at the sub-catchment level to identify the most affected areas. This study introduces a new sub-catchment-based perspective on ecosystem health assessment and underscores the zooplankton's role as robust indicators of ecological change.


Assuntos
Biodiversidade , Ecossistema , Água Doce , Zooplâncton , Animais , Polônia , Agricultura , Biomassa , Rios , Monitoramento Ambiental/métodos
9.
Environ Pollut ; 360: 124658, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39098639

RESUMO

The significant impacts of total nitrogen (TN) and total phosphorus (TP) on riverine ecosystems underscores the critical need to identify the primary nutrient source areas in watersheds. This study aims to unravel the influences of terrain and land use types on mean monthly TN (TNM) and mean monthly TP (TPM) export across varying catchment resolutions in the Qiantang River Watershed of China. The findings of this study illuminated the critical role of topography in understanding nutrient dynamics, wielding a profound influence over water flow patterns and nutrient dispersion. Both land slope and Stream Power Index (SPI) displayed substantial negative correlations (r < -0.6) with TNM and TPM concentrations, whereas the Topographic Wetness Index (TWI) showed positive correlations with the nutrient indexes. In addition to terrain characteristics, impervious land surfaces had a positive correlation with nutrient concentrations, while grassland and forest areas exhibited negative correlations. Results further underscored the substantial influence of catchment resolution on correlations between watershed properties and riverine nutrient concentrations. It was imperative to choose an effective catchment resolution in watershed delineation - not too coarse, nor too fine - to accurately capture the topographic and land use impacts on nutrient dynamics. With the most appropriate catchment size (Catchment 700 km2), the critical pollution source areas for TN and TP pollution were identified, and thus could be used to guide future pollution reduction efforts. The study not only highlights the importance of identifying an appropriate catchment size for water pollution, but also emphasizes the necessity of effectively extracting critical pollution source areas to mitigate water nutrient pollution and increase the ecological integrity of the Qiantang River Watershed.


Assuntos
Monitoramento Ambiental , Nitrogênio , Fósforo , Rios , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Fósforo/análise , China , Rios/química , Nitrogênio/análise , Poluentes Químicos da Água/análise , Ecossistema
10.
Environ Monit Assess ; 196(9): 852, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192155

RESUMO

The African Great Lakes Region has experienced substantial land use land cover change (LULCC) over the last decades, driven by a complex interplay of various factors. However, a comprehensive analysis exploring the relationships between LULCC, and its explanatory variables remains unexplored. This study focused on the Lake Kivu catchment in Rwanda, analysing LULCC from 1990 to 2020, identifying major variables, and predicting future LULC scenarios under different development trajectories. Image classification was conducted in Google Earth Engine using random forest classifier, by incorporating seasonal composites Landsat images, spectral indices, and topographic features, to enhance discrimination and capture seasonal variations. The results demonstrated an overall accuracy exceeding 83%. Historical analysis revealed significant changes, including forest loss (26.6 to 18.7%) and agricultural land expansion (27.7 to 43%) in the 1990-2000 decade, attributed to political conflicts and population movements. Forest recovery (24.8% by 2020) was observed in subsequent decades, driven by Rwanda's sustainable development initiatives. A Multi-Layer Perceptron neural network from Land Change Modeler predicted distinct 2030 and 2050 LULC scenarios based on natural, socio-economic variables, and historical transitions. Analysis of explanatory variables highlighted the significant role of proximity to urban centers, population density, and terrain in LULCC. Predictions indicate distinct trajectories influenced by demographic and socio-economic trends. The study recommends adopting the Green Growth Economy scenario aligned with ongoing conservation measures. The findings contribute to identifying opportunities for land restoration and conservation efforts, promoting the preservation of Lake Kivu catchment's ecological integrity, in alignment with national and global goals.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Monitoramento Ambiental , Lagos , Análise Espaço-Temporal , Monitoramento Ambiental/métodos , Lagos/química , Ruanda , Great Lakes Region , Florestas , Urbanização/tendências
11.
Environ Monit Assess ; 196(9): 792, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110269

RESUMO

Soil erosion and sediment yield is a global problem that increasingly contributes to soil degradation. Although erosion analysis requires the availability of erosion and sedimentation data, the lack of sediment monitoring stations and the resulting limitations in collecting sediment measurements have necessitated the use of experimental models in many areas. The present study aimed to compare Factorial Scoring Model (FSM) and Modified Pacific South-West Inter-Agency Committee (MPSIAC) model for estimating erosion in the Mazdaran Basin (Firoozkuh, Iran). For this purpose, the required maps were prepared for both models, and the sediment rate was estimated using the two models to compare their efficiency using the corresponding maximum error (ME) and coefficient of determination (R2) values. The results showed that considering sediment based on the FSM model, the studied catchment consisted of regions with a high and very high sediment yield, while the MPSIAC model identified regions with low, medium, and high sediment yield. With an R2 value of 0.62 and an ME value of 2.24, the MPSIAC model provided more accurate estimates of the sediment yield in the studied area. Using the MPSIAC model, sediment yield was 6687.86 tons per year or the equivalent of 2.64 tons/ha per year.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Erosão do Solo , Solo , Irã (Geográfico) , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Solo/química , Modelos Teóricos
12.
J Environ Manage ; 366: 121836, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39018841

RESUMO

Microplastic (MP) pollution has become a pressing concern in global freshwater ecosystems because rivers serve as essential channels for the transport of terrestrial debris to the ocean. The current researches mostly focus on the large catchments, but the impact on the small catchments remains underexplored. In this study, we employed Strahler's stream order classification to delineate the catchment structure of the Beijiang River in South China. The distribution pattern of MP contamination and the factors influencing the distribution pattern, were assessed across the streams at different orders. We found that the Beijiang River was moderately polluted compare to other rivers in China, with an average MP abundance of 2.15 ± 1.65 items/L. MP abundance ranged from 3.17 to 1.45 items/L in the streams at different orders, and significantly decreased with increasing stream order (R2 = 0.93). This highlights the key role of small rivers as the channels for the transport of MPs from watersheds to main streams. The high abundance of PP and PE fibers, the high correlation between the stream order and the resin proportion (R2 = 0.89), and the significant correlation between MP abundance and proximity to urban centers (P = 0.02), indicated that MP pollution across the streams at different orders was predominantly influenced by anthropogenic activities, rather than natural environmental factors. By integrating MP data with hydrographic information, the annual MP loads for the streams at Orders 1 to Order 5 were estimated to be 4.63, 39.38, 204.63, 503.06, and 1137.88 tons/yr, respectively. Additionally, an ecological risk assessment indicates that MP pollution led to a low risk in the Beijiang River. Our findings deepen the understanding of MP pollution within freshwater river networks, and emphasize the crucial role of tributary systems in transporting MPs to main river channels.


Assuntos
Monitoramento Ambiental , Microplásticos , Rios , Rios/química , Microplásticos/análise , China , Água Doce/química , Poluentes Químicos da Água/análise , Ecossistema
13.
Sci Total Environ ; 947: 174668, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38997039

RESUMO

Understanding the historical variations in organic matter (OM) input to lake sediments and the possible mechanisms regulating this phenomenon is important for studying carbon cycling and burial in lake systems; however, this topic remains poorly addressed for macrophyte-dominated lakes. To bridge these gaps, we analyzed bulk OM and molecular geochemical proxies in a dated sediment core from Lake Liangzi, a typical submerged macrophyte-dominated lake in East China, to infer changes in OM input to sediments over the past 169 years due to the intensification of human activities in the catchment. A relatively primitive OM input pattern was observed in ca. 1841-1965, during which the lowest hydrogen index (HI), short-chain n-alkane abundance, and n-C17/n-C16 alkane indicated minimal input from phytoplankton, whereas the high Paq (proxy of aquatic macrophyte input) and long-chain n-alkane abundance suggested dominant and subordinate inputs from submerged and emergent macrophytes, respectively. OM input transitioned during ca. 1965-1993, with the highest Paq and lowest long-chain n-alkane abundance, indicating an increase of submerged macrophyte input and concurrent decline of emergent macrophyte input, probably caused by hydrological regulation practices and land reclamation in the 1960s, respectively. A further shift in OM input was observed since ca. 1993, characterized by the beginning of an increase in phytoplankton input, as indicated by the greater HI, short-chain n-alkane abundance, and n-C17/n-C16 alkane in sediments. Moreover, a lower Paq and higher abundance of long-chain n-alkanes indicated a decline in input from submerged macrophytes and an elevated input from terrestrial plants. The increase in αß-hopane abundance and homohopane index value indicated that petroleum-sourced OM was first introduced into the sediments. The causes of these OM input changes included nutrient influx associated with domestic and industrial discharge, aquaculture within the lake, and widespread deforestation and land clearance in the catchment.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Lagos/química , China , Sedimentos Geológicos/química , Efeitos Antropogênicos , Poluentes Químicos da Água/análise
14.
Water Res ; 262: 122118, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39083901

RESUMO

Catchment-scale nitrate dynamics involve complex coupling of hydrological transport and biogeochemical transformations, imposing challenges for source control of diffuse pollution. The Damköhler number (Da) offers a dimensionless dual-lens concept that integrates the timescales of exposure and processing, but quantifying both timescales in heterogeneous catchments remains methodologically challenging. Here, we propose a novel spatio-temporal framework for catchment-scale quantification of Da based on the ecohydrological modeling platform EcH2O-iso that coupled isotope-aided water age tracking and nitrate modeling. We examined Da variability of soil denitrification in the heterogeneous Selke catchment (456 km2, central Germany). Results showed that warm-season soil denitrification was of catchment-wide significance (Da >1), while its high spatial variations were co-determined by varying exposure times and removal efficiencies (e.g., channel-connected lowland areas are hotspots). Moreover, Da seasonally shifted from processing-dominance to transport-dominance during the wet-spring season (from >1 to <1), implying important linkages between summer terrestrial denitrification and subsequent winter river water quality. Under the prolonged 2018-2019 droughts, denitrification removal generally reduced, resulting in further accumulation in agricultural soils. Moreover, the space-time responses of Da variability indicated important implications for catchment water quality. The older water in lowland areas exhibited extra risks of groundwater contamination, whilst agricultural areas in the hydrologically responsive uplands became sensitive hotspots for export and river water pollution. Importantly, the lowland pixels intersecting river channels exhibited high removal efficiencies, as well as high resilience to the disturbances (wet-spring Da shifted to >1 under drought conditions). The proposed catchment-wide Da framework is implied by mechanistic modeling, which is transferable across various environmental conditions. This could shed light on understanding of catchment N processes, and thus providing site-specific implications of non-point source pollution controls.


Assuntos
Nitratos , Qualidade da Água , Nitratos/análise , Monitoramento Ambiental/métodos , Desnitrificação , Estações do Ano , Modelos Teóricos , Poluentes Químicos da Água/análise , Solo/química , Alemanha , Rios/química
15.
Sci Total Environ ; 949: 174971, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39069187

RESUMO

The B1 tailings dam of Córrego do Feijão iron-ore mine owned by Vale, S.A. company collapsed in 25 January 2019 releasing to the Ferro-Carvão stream watershed (32.6 km2) as much as 11.7 Mm3 of mine waste. A major share (8.9 Mm3) has been deposited along the stream channel and margins forming a 2.7 km2 patch. The main purpose of this study was to question whether the tailings deposit impacted the local water cycle and how. Using the Soil and Water Assessment Tool (SWAT) hydrologic model, the water balance components of 36 hydrologic response units (HRU) were calculated for pre- (S1) and post- (S2) B1 dam rupture scenarios represented by appropriate soil, land use and tailings cover. The results revealed an increase of evapotranspiration from S1 to S2, related to the sudden removal of vegetation from the stream valley and replacement with a blanket of mud, which raised the exposure of Earth's surface to sunlight and hence soil evaporation. For 11 HRU (10.3 km2) located around the tailings deposit, a decrease in lateral flow was observed, accompanied by an increase in percolation and a slight increase in groundwater flow. In this case, the water balance changes observed between S1 and S2 reflected a barrier effect imposed to the lateral flows by the tailings, which shifted the flows towards the vertical direction (percolation). Thus, the water followed an easier vertical route until reaching the shallow aquifer and being converted into groundwater flow. As per the modelling outcomes, the hydrologic impacts of B1 dam rupture are relevant because they affected 1/3 of Ferro-Carvão stream watershed, and hence claim for the complete removal of the tailings.

16.
Sci Rep ; 14(1): 15651, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977793

RESUMO

Water clarity on the inshore Great Barrier Reef (GBR) is greatly influenced by terrestrial runoff of suspended particulate matter (SPM). Catchment sediment tracing studies often do not extend into the marine environment, preventing the analysis of preferential marine transport. This study employs novel collection and sediment tracing techniques to examine the transport of the terrigenous 'mineral' component of plume SPM within the GBR lagoon for two flood events. Utilising geochemical, radionuclide and clay mineral analysis, we trace terrigenous mineral sediments > 100 km from the river mouth. We show that the SPM geochemistry is highly influenced by particle-size fractionation, desorption, and dilution within the plume, rendering traditional tracing methods unviable. However, the ratios of rare earth elements (REE) to thorium (Th) provide stable tracers of mineral SPM transported across the catchment to marine continuum and allow the identification of discrete catchment sources for each flood event. Plume sediment radionuclides are also stable and consistent with sub-surface erosion sources.

17.
Risk Anal ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074846

RESUMO

Limited access to food stores is often linked to higher health risks and lower community resilience. Socially vulnerable populations experience persistent disparities in equitable food store access. However, little research has been done to examine how people's access to food stores is affected by natural disasters. Previous studies mainly focus on examining potential access using the travel distance to the nearest food store, which often falls short of capturing the actual access of people. Therefore, to fill this gap, this paper incorporates human mobility patterns into the measure of actual access, leveraging large-scale mobile phone data. Specifically, we propose a novel enhanced two-step floating catchment area method with travel preferences (E2SFCA-TP) to measure accessibility, which extends the traditional E2SFCA model by integrating actual human mobility behaviors. We then analyze people's actual access to grocery and convenience stores across both space and time under the devastating winter storm Uri in Harris County, Texas. Our results highlight the value of using human mobility patterns to better reflect people's actual access behaviors. The proposed E2SFCA-TP measure is more capable of capturing mobility variations in people's access, compared with the traditional E2SFCA measure. This paper provides insights into food store access across space and time, which could aid decision making in resource allocation to enhance accessibility and mitigate the risk of food insecurity in underserved areas.

18.
Environ Res ; 260: 119545, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986798

RESUMO

Mercury concentrations ([Hg]) in fish reflect a complex array of interacting biogeochemical and ecological variables. In northern regions where fish are a critical subsistence food, understanding and predicting fish [Hg] can be particularly difficult, largely due to a paucity of comprehensive data associated with the logistical challenges of field sampling. Building on previous work where we elucidated causal relationships between fish [Hg] and a variety of catchment, water quality, and ecological variables in subarctic lakes, we investigated whether using only ratios of catchment area to lake area (CA:LA) can predict [Hg] in northern freshwater fish species. As CA:LA can be sensed remotely, they may be more feasible and practical to obtain than field data in far northern regions. Our study included thirteen remote lakes that represent a CA:LA gradient of 6.2-423.5 within an ∼66,000 km2 subarctic region of Northwest Territories, Canada. We found that size-standardized [Hg] in three widespread fish species, including Lake Whitefish (Coregonus clupeaformis), Walleye (Sander vitreus), and Northern Pike (Esox lucius), were significantly and positively related to CA:LA (p < 0.007, r2 = 67-80%), indicating higher fish [Hg] in smaller lakes surrounded by relatively larger catchments. Our findings provide compelling evidence that remotely sensed CA:LA can be used to predict [Hg] in northern fishes and aid in prioritizing understudied and subsistence fishing lakes of the Canadian subarctic for [Hg] monitoring programs.


Assuntos
Monitoramento Ambiental , Peixes , Lagos , Mercúrio , Poluentes Químicos da Água , Animais , Lagos/química , Mercúrio/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Territórios do Noroeste , Tecnologia de Sensoriamento Remoto , Regiões Árticas
19.
Water Res ; 259: 121863, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38870886

RESUMO

Plastic pollution has emerged as a global environmental concern, impacting both terrestrial and marine ecosystems. However, understanding of plastic sources and transport mechanism at the catchment scale remains limited. This study introduces a multi-source plastic yield and transport model, which integrates catchment economic activities, climate data, and hydrological processes. Model parameters were calibrated using a combination of field observations, existing literature, and statistical random sampling techniques. The model demonstrated robust performance in simulating both plastic yield and transport from 2010 to 2020 in the upper and middle Mulan River Catchment, located in southeast China. The annual average yield coefficients were found to closely align with existing estimations, and the riverine outflow exhibited a high correlation coefficient of 0.97, with biases ranging from -63.0 % to -21.4 % across all monitoring stations. The analysis reveals that, on average, 12.5 ± 2.5 % of the total plastic yield is transported to rivers annually, with solid waste identified as the primary source, accounting for 37.8 ± 20.7 % of the total load to rivers, followed by agricultural film (26.4 ± 9.8 %), impermeable surfaces (21.5 ± 10.3 %), urban and rural sewage (10.4 ± 5.0 % and 3.0 ± 1.5 %, respectively), and industrial wastewater (0.9 ± 0.7 %). The annual average outflow was estimated to between 9.3 and 43.0 ton/year (median: 23.1) at a 95 % confidence level. This study not only provides insights into the primary sources and transport pathways of plastic pollution at the catchment scale, but also offers a valuable tool for informing effective plastic pollution mitigation strategies.


Assuntos
Monitoramento Ambiental , Plásticos , Rios , Modelos Teóricos , China , Poluentes Químicos da Água/análise , Hidrologia
20.
Environ Pollut ; 356: 124232, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823549

RESUMO

Mercury (Hg) is a toxic metal that presents a major risk to ecosystems, biota, human health, and remains a priority concern. In temperate and boreal lakes Hg and methylmercury (MMHg) are expected to vary as a function of atmospheric Hg deposition, lake water chemistry, catchment characteristics and climate variables. The aim of this study was to quantify Hg and MMHg in unperturbed oligotrophic lakes and to identify the factors controlling their distribution. We first hypothesized that lake Hg (and MMHg to lesser extent) spatial variations are linked to atmospheric deposition, catchment characteristics, and terrestrial exportation of dissolved organic carbon (DOC). We secondly examined if lake Hg concentrations have followed the decrease in atmospheric Hg emission observed between the mid-1990s to the end-2010s. We found that overall, atmospheric Hg has little impact on lake Hg and MMHg concentrations, which are both primarily influenced by DOC input originating from the forest catchment. The relationship between DOC and Hg differed between the spring and the fall, with a Hg-to-DOC ratio twice as high in spring. This seems related to snowmelt input of Hg (with a relatively reduced input of DOC) or the internal lake build-up of Hg during the ice-covered period. Of the 10 lakes intensively visited over a 20-year period, only 3 showed significant lake Hg decreases despite significant negative trends in atmospheric Hg concentrations, suggesting a lag between atmospheric and surface water temporal trends. Overall, terrestrial catchments retain around 80% of atmospheric Hg implying that large Hg pools have been built up in soils in the last decades. As such, the reduction of atmospheric Hg alone will not necessarily result in Hg decreases in lakes, since the Hg concentrations may be modulated by DOC export trends and catchment characteristics. This stresses the need to improve our understanding of the processes governing Hg transfers from catchments into lakes.


Assuntos
Monitoramento Ambiental , Lagos , Mercúrio , Poluentes Químicos da Água , Lagos/química , Mercúrio/análise , Poluentes Químicos da Água/análise , Compostos de Metilmercúrio/análise , Estações do Ano , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA