Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 8(11): 4789-4806, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36202388

RESUMO

Many dynamic interactions within the cell microenvironment modulate cell behavior and cell fate. However, the pathways and mechanisms behind cell-cell or cell-extracellular matrix interactions remain understudied, as they occur at a nanoscale level. Recent progress in nanotechnology allows for mimicking of the microenvironment at nanoscale in vitro; electron-beam lithography (EBL) is currently the most promising technique. Although this nanopatterning technique can generate nanostructures of good quality and resolution, it has resulted, thus far, in the production of only simple shapes (e.g., rectangles) over a relatively small area (100 × 100 µm), leaving its potential in biological applications unfulfilled. Here, we used EBL for cell-interaction studies by coating cell-culture-relevant material with electron-conductive indium tin oxide, which formed nanopatterns of complex nanohexagonal structures over a large area (500 × 500 µm). We confirmed the potential of EBL for use in cell-interaction studies by analyzing specific cell responses toward differentially distributed nanohexagons spaced at 1000, 500, and 250 nm. We found that our optimized technique of EBL with HaloTags enabled the investigation of broad changes to a cell-culture-relevant surface and can provide an understanding of cellular signaling mechanisms at a single-molecule level.


Assuntos
Nanoestruturas , Nanotecnologia , Nanotecnologia/métodos , Nanoestruturas/química , Matriz Extracelular , Técnicas de Cultura de Células , Diferenciação Celular
2.
Nanomaterials (Basel) ; 9(4)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31010178

RESUMO

Biodegradable nanofibers are extensively employed in different areas of biology and medicine, particularly in tissue engineering. The electrospun polycaprolactone (PCL) nanofibers are attracting growing interest due to their good mechanical properties and a low-cost structure similar to the extracellular matrix. However, the unmodified PCL nanofibers exhibit an inert surface, hindering cell adhesion and negatively affecting their further fate. The employment of PCL nanofibrous scaffolds for wound healing requires a certain modification of the PCL surface. In this work, the morphology of PCL nanofibers is optimized by the careful tuning of electrospinning parameters. It is shown that the modification of the PCL nanofibers with the COOH plasma polymers and the subsequent binding of NH2 groups of protein molecules is a rather simple and technologically accessible procedure allowing the adhesion, early spreading, and growth of human fibroblasts to be boosted. The behavior of fibroblasts on the modified PCL surface was found to be very different when compared to the previously studied cultivation of mesenchymal stem cells on the PCL nanofibrous meshes. It is demonstrated by X-ray photoelectron spectroscopy (XPS) that the freeze-thawed platelet-rich plasma (PRP) immobilization can be performed via covalent and non-covalent bonding and that it does not affect biological activity. The covalently bound components of PRP considerably reduce the fibroblast apoptosis and increase the cell proliferation in comparison to the unmodified PCL nanofibers or the PCL nanofibers with non-covalent bonding of PRP. The reported research findings reveal the potential of PCL matrices for application in tissue engineering, while the plasma modification with COOH groups and their subsequent covalent binding with proteins expand this potential even further. The use of such matrices with covalently immobilized PRP for wound healing leads to prolonged biological activity of the immobilized molecules and protects these biomolecules from the aggressive media of the wound.

3.
Biochem Biophys Res Commun ; 500(3): 557-563, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29673588

RESUMO

Recently, a robust mechanical method has been established to isolate a small subpopulation of highly tumorigenic tumor repopulating cells (TRCs) from parental melanoma cells. In order to characterize the molecular and mechanical properties of TRCs, we utilized the tension gauge tether (TGT) single-molecule platform and investigated force requirements during early cell spreading events. TRCs required the peak single molecular tension of around 40 pN through integrins for initial adhesion like the parental control cells, but unlike the control cells, they did not spread and formed very few mature focal adhesions (FAs). Single molecule resolution RNA quantification of three Rho GTPases showed that downregulation of Cdc42, but not Rac1, is responsible for the unusual biophysical features of TRCs and that a threshold level of Cdc42 transcripts per unit cell area is required to initiate cell spreading. Cdc42 overexpression rescued TRC spreading through FA formation and restored the sensitivity to tension cues such that TRCs, like parental control cells, increase cell spreading with increasing single-molecular tension cues. Our single molecule studies identified an unusual biophysical feature of suppressed spreading of TRCs that may enable us to distinguish TRC population from a pool of heterogeneous tumor cell population.


Assuntos
Movimento Celular , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Fenômenos Biomecânicos , Adesões Focais/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Imagem Individual de Molécula , Proteínas rho de Ligação ao GTP/metabolismo
4.
ACS Appl Mater Interfaces ; 8(30): 19333-42, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27404911

RESUMO

The surface properties of implanted materials or devices play critical roles in modulating cell behavior. However, the surface properties usually affect cell behaviors synergetically so that it is still difficult to separately investigate the influence of a single property on cell behavior in practical applications. In this study, alginate-chitosan (AC) microcapsules with a dense or loose gel structure were fabricated to understand the effect of gel structure on cell behavior. Cells preferentially adhered and spread on the loose gel structure microcapsules rather than on the dense ones. The two types of microcapsules exhibited nearly identical surface positive charges, roughness, stiffness, and hydrophilicity; thus, the result suggested that the gel structure was the principal factor affecting cell behavior. X-ray photoelectron spectroscopy analyses demonstrated that the overall percentage of positively charged amino groups was similar on both microcapsules. The different gel structures led to different states and distributions of the positively charged amino groups of chitosan, so we conclude that the loose gel structure facilitated greater cell adhesion and spreading mainly because more protonated amino groups remained unbound and exposed on the surface of these microcapsules.


Assuntos
Cápsulas/química , Adesão Celular , Alginatos/química , Animais , Linhagem Celular , Quitosana/química , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA