Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Biopolymers ; : e23612, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994706

RESUMO

Natural-derived biomaterials can be used as substrates for the growth, proliferation, and differentiation of cells. In this study, bovine vitreous humor as a biological material was cross-linked to silk fibroin with different concentration ratios to design a suitable substrate for corneal tissue regeneration. The cross-linked samples were evaluated with different analyses such as structural, physical (optical, swelling, and degradation), mechanical, and biological (viability, cell adhesion) assays. The results showed that all samples had excellent transparency, especially those with higher silk fibroin content. Increasing the ratio of vitreous humor to silk fibroin decreased mechanical strength and increased swelling and degradation, respectively. There was no significant difference in the toxicity of the samples, and with the increase in vitreous humor ratio, adhesion and cell proliferation increased. Generally, silk fibroin with vitreous humor can provide desirable characteristics as a transparent film for corneal wound healing.

2.
SLAS Discov ; 29(6): 100174, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084335

RESUMO

Bioluminescence- and fluorescence-based resonance energy transfer assays have gained considerable attention in pharmacological research as high-throughput scalable tools applicable to drug discovery. To this end, G protein-coupled receptors represent the biggest target class for marketed drugs, and among them, orphan G protein-coupled receptors have the biggest untapped therapeutic potential. In this review, the cases where biophysical methods, BRET and FRET, were employed for deorphanization and ligand discovery studies on orphan G protein-coupled receptors are listed and discussed.

3.
Methods Mol Biol ; 2825: 293-308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913317

RESUMO

Solid tumors and tumor-derived cell lines commonly contain highly enlarged (giant) cancer cells that enter a state of transient dormancy (active sleep) after they are formed, but retain viability, secrete growth promoting factors, and exhibit the ability to generate rapidly proliferating progeny with stem cell-like properties. Giant cells with a highly enlarged nucleus or multiple nuclei are often called polyploid giant cancer cells (PGCCs). Although PGCCs constitute only a subset of cells within a solid tumor/tumor-derived cell line, their frequency can increase markedly following exposure to ionizing radiation or chemotherapeutic drugs. In this chapter we outline a simple and yet highly sensitive cell-based assay, called single-cell MTT, that we have optimized for determining the viability and metabolic activity of PGCCs before and after exposure to anticancer agents. The assay measures the ability of individual PGCCs to convert the MTT tetrazolium salt to its water insoluble formazan metabolite. In addition to evaluating PGCCs, this assay is also a powerful tool for determining the viability and metabolic activity of cancer cells undergoing premature senescence following treatment with anticancer agents, as well as for distinguishing dead cancer cells and dying cells (e.g., exhibiting features of apoptosis, ferroptosis, etc.) that have the potential to resume proliferation through a process called anastasis.


Assuntos
Sobrevivência Celular , Células Gigantes , Poliploidia , Humanos , Sobrevivência Celular/efeitos dos fármacos , Células Gigantes/metabolismo , Linhagem Celular Tumoral , Análise de Célula Única/métodos , Sais de Tetrazólio/química , Neoplasias/metabolismo , Neoplasias/patologia , Antineoplásicos/farmacologia , Proliferação de Células
4.
Molecules ; 29(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675719

RESUMO

Non-communicable diseases (NCDs) represent a global health challenge, constituting a major cause of mortality and disease burden in the 21st century. Addressing the prevention and management of NCDs is crucial for improving global public health, emphasizing the need for comprehensive strategies, early interventions, and innovative therapeutic approaches to mitigate their far-reaching consequences. Marine organisms, mainly algae, produce diverse marine natural products with significant therapeutic potential. Harnessing the largely untapped potential of algae could revolutionize drug development and contribute to combating NCDs, marking a crucial step toward natural and targeted therapeutic approaches. This review examines bioactive extracts, compounds, and commercial products derived from macro- and microalgae, exploring their protective properties against oxidative stress, inflammation, cardiovascular, gastrointestinal, metabolic diseases, and cancer across in vitro, cell-based, in vivo, and clinical studies. Most research focuses on macroalgae, demonstrating antioxidant, anti-inflammatory, cardioprotective, gut health modulation, metabolic health promotion, and anti-cancer effects. Microalgae products also exhibit anti-inflammatory, cardioprotective, and anti-cancer properties. Although studies mainly investigated extracts and fractions, isolated compounds from algae have also been explored. Notably, polysaccharides, phlorotannins, carotenoids, and terpenes emerge as prominent compounds, collectively representing 42.4% of the investigated compounds.


Assuntos
Microalgas , Humanos , Microalgas/química , Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Animais , Alga Marinha/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química , Oceanos e Mares , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química
5.
Methods Cell Biol ; 182: 265-284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359982

RESUMO

Alternative lengthening of telomeres (ALT) is a telomerase-independent and recombination-based mechanism used by approximately 15% of human cancers to maintain telomere length and to sustain proliferation. ALT-positive cells display unique features that could be exploited for tailored cancer therapies. A key limitation for the development of ALT-specific treatments is the lack of an assay to detect ALT-positive cells that is easy to perform and that can be scaled up. One of the most broadly used assays for ALT detection, CCA (C-circle assay), does not provide single-cell information and it is not amenable to High-Throughput Screening (HTS). To overcome these limitations, we developed Native-FISH (N-FISH) as an alternative method to visualize ALT-specific single-stranded telomeric DNA. N-FISH produces single-cell data, can be applied to fixed tissues, does not require DNA isolation or amplification steps, and it can be miniaturized in a 384-well format. This protocol details the steps to perform N-FISH protocol both in a low- and high-throughput format to analyze ALT. While low-throughput N-FISH is useful to assay the ALT state of cell lines, we expect that the miniaturized N-FISH assay coupled with high-throughput imaging will be useful in functional genomics and chemical screens to identify novel cellular factors that regulate ALT and potential ALT therapeutic targets for cancer therapies directed against ALT-positive tumors, respectively.


Assuntos
Ensaios de Triagem em Larga Escala , Neoplasias , Humanos , Animais , DNA , Telômero/genética , Peixes/genética
6.
Eur J Med Chem ; 266: 116128, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38232463

RESUMO

In this paper we present the design, synthesis, and biological evaluation of a new series of peptidomimetics acting as potent anti-SARS-CoV-2 agents. Starting from our previously described Main Protease (MPro) and Papain Like Protease (PLPro) dual inhibitor, CV11, here we disclose its high inhibitory activity against cathepsin L (CTSL) (IC50 = 19.80 ± 4.44 nM), an emerging target in SARS-CoV-2 infection machinery. An in silico design, inspired by the structure of CV11, led to the development of a library of peptidomimetics showing interesting activities against CTSL and Mpro, allowing us to trace the chemical requirements for the binding to both enzymes. The screening in Vero cells infected with 5 different SARS-CoV-2 variants of concerns, highlighted sub-micromolar activities for most of the synthesized compounds (13, 15, 16, 17 and 31) in agreement with the enzymatic inhibition assays results. The compounds showed lack of activity against several different RNA viruses except for the 229E and OC43 human coronavirus strains, also characterized by a cathepsin-L dependent release into the host cells. The most promising derivatives were also evaluated for their chemical and metabolic in-vitro stability, with derivatives 15 and 17 showing a suitable profile for further preclinical characterization.


Assuntos
COVID-19 , Peptidomiméticos , Chlorocebus aethiops , Humanos , Animais , Catepsina L , SARS-CoV-2 , Peptidomiméticos/farmacologia , Inibidores de Proteases/farmacologia , Células Vero , Peptídeo Hidrolases , Antivirais/farmacologia , Simulação de Acoplamento Molecular
7.
Environ Int ; 179: 108155, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688808

RESUMO

Aquatic environments are polluted with a multitude of organic micropollutants, which challenges risk assessment due the complexity and diversity of pollutant mixtures. The recognition that certain source-specific background pollution occurs ubiquitously in the aquatic environment might be one way forward to approach mixture risk assessment. To investigate this hypothesis, we prepared one typical and representative WWTP effluent mixture of organic micropollutants (EWERBmix) comprised of 81 compounds selected according to their high frequency of occurrence and toxic potential. Toxicological relevant effects of this reference mixture were measured in eight organism- and cell-based bioassays and compared with predicted mixture effects, which were calculated based on effect data of single chemicals retrieved from literature or different databases, and via quantitative structure-activity relationships (QSARs). The results show that the EWERBmix supports the identification of substances which should be considered in future monitoring efforts. It provides measures to estimate wastewater background concentrations in rivers under consideration of respective dilution factors, and to assess the extent of mixture risks to be expected from European WWTP effluents. The EWERBmix presents a reasonable proxy for regulatory authorities to develop and implement assessment approaches and regulatory measures to address mixture risks. The highlighted data gaps should be considered for prioritization of effect testing of most prevalent and relevant individual organic micropollutants of WWTP effluent background pollution. The here provided approach and EWERBmix are available for authorities and scientists for further investigations. The approach presented can furthermore serve as a roadmap guiding the development of archetypic background mixtures for other sources, geographical settings and chemical compounds, e.g. inorganic pollutants.


Assuntos
Poluentes Ambientais , Bases de Dados Factuais , Poluição Ambiental , Geografia , Relação Quantitativa Estrutura-Atividade
8.
SLAS Discov ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37573010

RESUMO

The increasing use of automation in cellular assays and cell culture presents significant opportunities to enhance the scale and throughput of imaging assays, but to do so, reliable data quality and consistency are critical. Realizing the full potential of automation will thus require the design of robust analysis pipelines that span the entire workflow in question. Here we present FocA, a deep learning tool that, in near real-time, identifies in-focus and out-of-focus images generated on a fully automated cell biology research platform, the NYSCF Global Stem Cell Array®. The tool is trained on small patches of downsampled images to maximize computational efficiency without compromising accuracy, and optimized to make sure no sub-quality images are stored and used in downstream analyses. The tool automatically generates balanced and maximally diverse training sets to avoid bias. The resulting model correctly identifies 100% of out-of-focus and 98% of in-focus images in under 4 s per 96-well plate, and achieves this result even in heavily downsampled data (∼30 times smaller than native resolution). Integrating the tool into automated workflows minimizes the need for human verification as well as the collection and usage of low-quality data. FocA thus offers a solution to ensure reliable image data hygiene and improve the efficiency of automated imaging workflows using minimal computational resources.

9.
Semin Immunol ; 66: 101725, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706520

RESUMO

T-cell immunity, mediated by CD4+ and CD8+ T cells, represents a cornerstone in the control of viral infections. Virus-derived T-cell epitopes are represented by human leukocyte antigen (HLA)-presented viral peptides on the surface of virus-infected cells. They are the prerequisite for the recognition of infected cells by T cells. Knowledge of viral T-cell epitopes provides on the one hand a diagnostic tool to decipher protective T-cell immune responses in the human population and on the other hand various prophylactic and therapeutic options including vaccination approaches and the transfer of virus-specific T cells. Such approaches have already been proven to be effective against various viral infections, particularly in immunocompromised patients lacking sufficient humoral, antibody-based immune response. This review provides an overview on the state of the art as well as current studies regarding the identification and characterization of viral T-cell epitopes and approaches of clinical application. In the first chapter in silico prediction tools and direct, mass spectrometry-based identification of viral T-cell epitopes is compared. The second chapter provides an overview of commonly used assays for further characterization of T-cell responses and phenotypes. The final chapter presents an overview of clinical application of viral T-cell epitopes with a focus on human immunodeficiency virus (HIV), human cytomegalovirus (HCMV) and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), being representatives of relevant viruses.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , Epitopos de Linfócito T , SARS-CoV-2 , Antígenos de Histocompatibilidade Classe I
10.
Neural Regen Res ; 17(10): 2093-2101, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35259814

RESUMO

The potential of polyphenols for treating chronic-degenerative diseases (particularly neurodegenerative diseases) is attractive. However, the selection of the best polyphenol for each treatment, the mechanisms by which they act, and their efficacy are frequently discussed. In this review, the basics and the advances in the field, as well as suggestions for using natural and synthetic polyphenols alone or in a combinatorial strategy with stem cell assays, are compiled and discussed. Thus, stem cells exhibit several responses when polyphenols are added to their environment, which could provide us with knowledge for advancing the elucidation of the origin of neurodegeneration. But also, polyphenols are being included in the innovative strategies of novel therapies for treating neurodegenerative diseases as well as metabolic diseases related to neurodegeneration. In this regard, flavonoid compounds are suggested as the best natural polyphenols due to their several mechanisms for acting in ameliorative effects; but increasing reports are involving other polyphenols. Even if some facts limiting bioactivity prevent them from conventional use, some natural polyphenols and derivatives hold the promise for being improved compounds, judged by their induced effects. The current results suggest polyphenols as enhancers of stem cell therapy against the targeted diseases.

11.
Appl Environ Microbiol ; 88(6): e0224121, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35108075

RESUMO

Validation of the antimicrobial performance of contact-killing polymer surfaces through the experimental determination of bacterial adhesion or viability, is essential for their targeted development and application. However, there is not yet a consensus on the single most appropriate evaluation method or procedure. Combining and benchmarking previously reported assays could reduce the significant variation and misinterpretation of efficacy data obtained from different methods. In this work, we systematically investigated the response of bacterial cells to antiadhesive and antiseptic polymer coatings by combining (i) bulk solution-based, (ii) thin-film spacer-based, and (iii) direct-contact assays. In addition, we evaluated the studied assays using a five-point scoring framework that highlights key areas for improvement. Our data suggest that combined microscopy assays provide a more comprehensive representation of antimicrobial performance, thereby helping to identify effective types of antibacterial polymer coatings. IMPORTANCE We present and evaluate a combination of methods for validating the efficacy of antimicrobial surfaces. Antimicrobial surfaces/coatings based on contact-killing components can be instrumental to functionalize a wide range of products. However, there is not yet a consensus on the single, most appropriate method to evaluate their performance. By combining three microscopy methods, we were able to discern contact-killing effects at the single-cell level that were not detectable by conventional bulk microbiological analyses. The developed approach is considered advantageous for the future targeted development of robust and sustainable antimicrobial surfaces.


Assuntos
Anti-Infecciosos , Polímeros , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Microscopia , Polímeros/farmacologia , Propriedades de Superfície
12.
Front Nutr ; 9: 1049623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741992

RESUMO

Gluten proteins are the causative agents of celiac disease (CD), a lifelong and worldwide spread food intolerance, characterized by an autoimmune enteropathy. Gluten is a complex mixture of high homologous water-insoluble proteins, characterized by a high content of glutamine and proline amino acids that confers a marked resistance to degradation by gastrointestinal proteases. As a consequence of that, large peptides are released in the gut lumen with the potential to activate inflammatory T cells, in CD predisposed individuals. To date, several strategies aimed to detoxify gluten proteins or to develop immunomodulatory drugs to recover immune tolerance to gluten are under investigation. This review overviews the state of art of both analytical and functional methods currently used to assess the immunogenicity potential of gluten proteins from different cereal sources, including native raw seed flours and complex food products, as well as drug-treated samples. The analytical design to assess the content and profile of gluten immunogenic peptides, described herein, is based on the oral-gastro-intestinal digestion (INFOGEST model) followed by extensive characterization of residual gluten peptides by proteomic and immunochemical analyses. These approaches include liquid chromatography-high-resolution mass spectrometry (LC-MS/MS) and R5/G12 competitive ELISA. Functional studies to assess the immune stimulatory capabilities of digested gluten peptides are based on gut mucosa T cells or peripheral blood cells obtained from CD volunteers after a short oral gluten challenge.

13.
Chem Biol Drug Des ; 99(1): 32-45, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34549885

RESUMO

The diverse experiences regarding the failure of tested drugs in the fight against COVID-19 made it clear that one should at least question the requirement to apply classical preclinical development strategies that demand cell and animal efficacy models to be tested before going into clinical trials. Most animals are not susceptible to infection with SARS-CoV-2, and so this led to one-sided virus replication experiments in cells and the use of animal models that have little in common with the complex pathogenesis of COVID-19 in humans. Therefore, non-clinical development strategies were designed to meet regulatory requirements, but they did not truly reflect the situation in the clinic. This has led the search for effective agents astray in many cases. As proof of this statement, we now bring together the results of such required preclinical experiments and compare with the results in clinical trials. Two clear conclusions that can be drawn from the experience to date: The required preclinical models are unsuitable for the development of innovative treatments medical devices in the case of COVID-19 and mono-action strategies (e.g. direct antivirals) are of very little or no benefit to patients under randomized,blinded conditions. Our hypothesis is that the complex situation of COVID-19 may benefit from multi-mode drugs. Here, the molecular class of aptamers could be a solution.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/farmacologia , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos
14.
Cancers (Basel) ; 13(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34771516

RESUMO

The NF-κB signaling system plays an important regulatory role in the control of many biological processes. The activities of NF-κB signaling networks and the expression of their target genes are frequently elevated in pathophysiological situations including inflammation, infection, and cancer. In these conditions, the outcome of NF-κB activity can vary according to (i) differential activation states, (ii) the pattern of genomic recruitment of the NF-κB subunits, and (iii) cellular heterogeneity. Additionally, the cytosolic NF-κB activation steps leading to the liberation of DNA-binding dimers need to be distinguished from the less understood nuclear pathways that are ultimately responsible for NF-κB target gene specificity. This raises the need to more precisely determine the NF-κB activation status not only for the purpose of basic research, but also in (future) clinical applications. Here we review a compendium of different methods that have been developed to assess the NF-κB activation status in vitro and in vivo. We also discuss recent advances that allow the assessment of several NF-κB features simultaneously at the single cell level.

15.
Antioxidants (Basel) ; 10(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208019

RESUMO

Plant extracts and pharmacopoeias represent an exceptional breeding ground for the discovery of new antioxidants. Until recently, the antioxidant activity was only measured by chemical hydrogen atom transfer (HAT) and single-electron transfer (SET) cell-free assays that do not inform about the actual effect of antioxidants in living systems. By providing information about the mode of action of antioxidants at the subcellular level, recently developed live cell assays are now changing the game. The idea of this review is to present the different cell-based approaches allowing a quantitative measurement of antioxidant effects of plant extracts. Up to date, only four different approaches have reached a certain degree of standardization: (1) the catalase-like assay using H2O2 as a stressor, (2) the cell antioxidant assay (CAA) using AAPH as a stressor and DCFH-DA as a readout, (3) the AOP1 assay which uses photoinduction to monitor and control cell ROS production, and (4) the Nrf2/ARE gene reporter system. The molecular aspects of these assays are presented in detail along with their features, drawbacks, and benefits. The Nrf2/ARE gene reporter system dedicated to indirect antioxidant effect measurement currently represents the most standardized approach with high-throughput applications. AOP1, the first technology linking a fine-tuning of cell ROS production with a quantitative signal, appears to be the most promising tool for the assessment of direct cellular ROS-scavenging effects at an industrial scale.

16.
Biochem J ; 478(13): 2589-2600, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34129679

RESUMO

The ATP binding cassette (ABC) transporters are membrane proteins that can act as putative receptors for Cry proteins from Bacillus thuringiensis (Bt) in the midgut of different insects. For the beet armyworm, Spodoptera exigua, ABCC2 and ABCC3 have been found to interact with Cry1A proteins, the main insecticidal proteins used in Bt crops, as well as Bt-based pesticides. The ABCC2 has shown to have specific binding towards Cry1Ac and is involved in the toxic process of Cry1A proteins, but the role of this transporter and how it relates with the Cry1A proteins is still unknown. Here, we have characterized the interactions between the SeABCC2 and the main proteins that bind to the receptor. By labeling the Cry1Aa protein, we have found that virtually all of the binding is in an oligomeric state, a conformation that allowed higher levels of specific binding that could not be achieved by the monomeric protein on its own. Furthermore, we have observed that Cry1A proteins can hetero-oligomerize in the presence of the transporter, which is reflected in an increase in binding and toxicity to SeABCC2-expressing cells. This synergism can be one of the reasons why B. thuringiensis co-expresses different Cry1 proteins that can apparently have similar binding preferences. The results from in vitro competition and ex vivo competition showed that Cry1Aa, Cry1Ab and Cry1Ac share functional binding sites. By using Cry1Ab-Cry1Ac chimeras, the presence of domain I from Cry1A proteins was revealed to be critical for oligomer formation.


Assuntos
Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/química , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insetos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Spodoptera/metabolismo , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Sobrevivência Celular/genética , Endotoxinas/química , Endotoxinas/genética , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas de Insetos/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Células Sf9 , Spodoptera/citologia , Spodoptera/genética
17.
J Allergy Clin Immunol Pract ; 9(10): 3575-3583, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34182162

RESUMO

COVID-19 has had a calamitous effect on the global community. Despite intense study, the immunologic response to the infection is only partially understood. In addition to older age and ethnicity, patients with comorbidities including obesity, diabetes, hypertension, coronary artery disease, malignancy, renal, and pulmonary disease may experience severe outcomes. Some patients with primary immunodeficiency (PID) and secondary immunodeficiency also appear to be at increased risk from COVID-19. In addition to vulnerability to SARS-CoV-2, patients with PIDs often have chronic pulmonary disease and may not respond to vaccines, which exacerbates their long-term risk. Patients with common variable immunodeficiency disorders, the most frequent symptomatic PID in adults and children, have a spectrum of B- and T-cell defects. It may be possible to stratify their risk for severe COVID-19 based on age, ethnicity, the severity of the T-cell defect, and the presence of other comorbidities. Patients with common variable immunodeficiency disorders and other immunodeficiencies are at risk for Chronic COVID-19, a dangerous stalemate between a suboptimal immune response and SARS-CoV-2. Intra-host viral evolution could result in the rapid emergence of vaccine-resistant mutants and variants of high consequence; it is a public health emergency. Vaccination and prevention of Chronic COVID-19 in immunodeficient patients is therefore of the utmost priority. Having a reliable diagnostic assay for T-cell immunity to SARS-CoV-2 is critical for evaluating responses to vaccines in these patients. New treatments for SARS-CoV-2 such as NZACE2-Patari are likely to be particularly beneficial for immunodeficient patients, especially those who fail to mount a robust T-cell response to COVID-19 vaccines.


Assuntos
COVID-19 , Imunodeficiência de Variável Comum , Idoso , Vacinas contra COVID-19 , Imunodeficiência de Variável Comum/epidemiologia , Humanos , SARS-CoV-2 , Linfócitos T
18.
Stem Cell Reports ; 16(6): 1614-1628, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33961793

RESUMO

Advances in the isolation and gene expression profiling of single hematopoietic stem cells (HSCs) have permitted in-depth resolution of their molecular program. However, long-term HSCs can only be isolated to near purity from adult mouse bone marrow, thereby precluding studies of their molecular program in different physiological states. Here, we describe a powerful 7-day HSC hibernation culture system that maintains HSCs as single cells in the absence of a physical niche. Single hibernating HSCs retain full functional potential compared with freshly isolated HSCs with respect to colony-forming capacity and transplantation into primary and secondary recipients. Comparison of hibernating HSC molecular profiles to their freshly isolated counterparts showed a striking degree of molecular similarity, further resolving the core molecular machinery of HSC self-renewal while also identifying key factors that are potentially dispensable for HSC function, including members of the AP1 complex (Jun, Fos, and Ncor2), Sult1a1 and Cish. Finally, we provide evidence that hibernating mouse HSCs can be transduced without compromising their self-renewal activity and demonstrate the applicability of hibernation cultures to human HSCs.


Assuntos
Arilsulfotransferase/metabolismo , Técnicas de Cultura de Células/métodos , Células-Tronco Hematopoéticas/fisiologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcriptoma , Animais , Transplante de Medula Óssea/métodos , Ciclo Celular , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Hibernação , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Análise de Célula Única , Nicho de Células-Tronco
19.
Expert Rev Clin Immunol ; 17(5): 421-430, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33745411

RESUMO

Introduction: Diagnostic tests play a critical role in the management of Sars-CoV-2, the virus responsible for COVID-19. There are two groups of tests, which are in widespread use to identify patients who have contracted the virus. The commonly used reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) test becomes negative once viral shedding ceases by approximately 2-3weeks. Antibody tests directed to viral antigens become positive after the second week of infection. IgG antibody responses to the virus are muted in children, pregnant females, and those with mild symptoms. IgA and IgM antibodies rapidly wane, although IgG antibodies directed to the receptor-binding domain (RBD) of the spike (S) glycoprotein are more durable. Current data show variability in the sensitivity of commercial and in-house antibody tests to SARS-CoV-2.Areas covered: The role of T cells in acute illness is uncertain, but long-term protection against the virus may rely on memory T cell responses. Measuring memory T cell responses is important for retrospective confirmation of cases, who may have been infected early in the pandemic before reliable RT-qPCR tests were available and whose SARS-CoV-2 antibodies may have become undetectable. Relevant peer-reviewed published references from PubMed are included up to 15 March 2021.Expert opinion: After surveying the literature, the authors present the case for urgent development of diagnostic T cell assays for SARS-CoV-2 by accredited laboratories.


Assuntos
COVID-19/diagnóstico , COVID-19/imunologia , Memória Imunológica , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Humanos , Imunoensaio
20.
FEBS J ; 288(8): 2529-2549, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33690974

RESUMO

Arrestins (arr) are multifunctional cytosolic adaptors that bind to active and phosphorylated G protein-coupled receptors (GPCRs) via a highly versatile interface. Arrestins stop G protein signaling and trigger other signaling pathways. Recently, 3D structures of arr-GPCR complexes have been solved, which provide a bulk of structural information for understanding the mechanism of arr recruitment and activation. However, many questions about the functional consequences of structural details and the dynamics of the arr-GPCR interaction remain open. A wealth of information about key determinants for the arr-GPCR interaction and their functional relevance, and dynamic insights into the process of arr binding and the functional outcomes of different binding modes have been provided by a series of biochemical methods which we review here. Importantly, most of these methods provide information from the live cell, which is a necessary validation and complement for structural data. With the main focus on the most recent research, we will highlight major findings about arr structure, function, and dynamics derived from mutagenesis studies, cross-linking studies, conformational probes, and sensors, and we summarize available systems to detect arr recruitment. Furthermore, we discuss recent findings and directions of in silico investigations in arr-GPCR complexes.


Assuntos
Proteínas de Ligação ao GTP/genética , Receptores Acoplados a Proteínas G/genética , beta-Arrestinas/genética , Humanos , Fosforilação/genética , Transdução de Sinais/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA